八年级数学全等三角形添加辅助线学案精品文件.doc

上传人:b****2 文档编号:1720492 上传时间:2022-10-23 格式:DOC 页数:19 大小:869KB
下载 相关 举报
八年级数学全等三角形添加辅助线学案精品文件.doc_第1页
第1页 / 共19页
八年级数学全等三角形添加辅助线学案精品文件.doc_第2页
第2页 / 共19页
八年级数学全等三角形添加辅助线学案精品文件.doc_第3页
第3页 / 共19页
八年级数学全等三角形添加辅助线学案精品文件.doc_第4页
第4页 / 共19页
八年级数学全等三角形添加辅助线学案精品文件.doc_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

八年级数学全等三角形添加辅助线学案精品文件.doc

《八年级数学全等三角形添加辅助线学案精品文件.doc》由会员分享,可在线阅读,更多相关《八年级数学全等三角形添加辅助线学案精品文件.doc(19页珍藏版)》请在冰豆网上搜索。

八年级数学全等三角形添加辅助线学案精品文件.doc

添加辅助线证三角形全等题库

考点分析:

全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

【三角形辅助线做法】

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

【常见辅助线的作法有以下几种】

1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等

变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形

全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,

是之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、

差、倍、分等类的题目。

6、特殊方法:

在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,

利用三角形面积的知识解答。

 

找全等三角形的方法:

(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;

(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;

(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:

①延长中线构造全等三角形;

②利用翻折,构造全等三角形;

③引平行线构造全等三角形;

④作连线构造等腰三角形。

常见辅助线的作法有以下几种:

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD

证明:

方法1

在AB上选一点F,使AF=AC,连接EF。

因AE是∠CAB的平分线,∠CAE=∠FAE,

又AC=AF,AE=AE

所以,△CAE≌△FAE

则∠C=∠AFE

又由AC//BD知∠C+∠D=180°

而∠AFE+∠BFE=180°

所以,∠D=∠BFE

又已知EB是∠ABD的平分线,即∠DBE=∠FBE,另外,还有EB=EB

所以利用三角形全等的判断定理AAS知△DBE≌△FBE,

所以,FB=DB

因此,AB=AF+FB=AC+BD。

例1:

如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:

BD=2CE。

思路分析:

1)题意分析:

本题考查等腰三角形的三线合一定理的应用

2)解题思路:

要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:

证明:

延长BA,CE交于点F,在ΔBEF和ΔBEC中,

∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,

∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,

∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

解题后的思考:

等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

 1.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,并交BC于D,DE⊥AB于E,若AB=6cm,求△DEB的周长。

2.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:

AD平分∠BAC.

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:

如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:

ΔABC是等腰三角形。

 

思路分析:

1)题意分析:

本题考查全等三角形常见辅助线的知识。

2)解题思路:

在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:

 

 

证明:

延长AD到E,使DE=AD,连接BE。

又因为AD是BC边上的中线,∴BD=DC

又∠BDE=∠CDA

ΔBED≌ΔCAD,

故EB=AC,∠E=∠2,

∵AD是∠BAC的平分线

∴∠1=∠2,

∴∠1=∠E,

∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

解题后的思考:

题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

 

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3:

已知,如图,AC平分∠BAD,CD=CB,AB>AD。

求证:

∠B+∠ADC=180°。

思路分析:

1)题意分析:

本题考查角平分线定理的应用。

2)解题思路:

因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程:

证明:

作CE⊥AB于E,CF⊥AD于F。

∵AC平分∠BAD,

∴CE=CF。

在Rt△CBE和Rt△CDF中,

∵CE=CF,CB=CD,

∴Rt△CBE≌Rt△CDF,

∴∠B=∠CDF,

∵∠CDF+∠ADC=180°,

∴∠B+∠ADC=180°。

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例6:

如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:

CD=AD+BC。

思路分析:

1)题意分析:

 本题考查全等三角形常见辅助线的知识:

截长法或补短法。

2)解题思路:

结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:

证明:

在CD上截取CF=BC,如图乙

∴△FCE≌△BCE(SAS),

∴∠2=∠1。

又∵AD∥BC,

∴∠ADC+∠BCD=180°,

∴∠DCE+∠CDE=90°,

∴∠2+∠3=90°,∠1+∠4=90°,

∴∠3=∠4。

在△FDE与△ADE中,

∴△FDE≌△ADE(ASA),

∴DF=DA,

∵CD=DF+CF,

∴CD=AD+BC。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:

a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;

②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线

(一)、截取构全等

如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:

BC=AB+CD。

例2.已知:

如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC

例3.已知:

如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:

AB-AC=CD

分析:

此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的线段上截取短的线段,来证明。

试试看可否把短的延长来证明呢?

练习

1.已知在△ABC中,AD平分∠BAC,∠B=2∠C,求证:

AB+BD=AC

2.已知:

在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求证:

AE=2CE

3.已知:

在△ABC中,AB>AC,AD为∠BAC的平分线,M为AD上任一点。

求证:

BM-CM>AB-AC

4.已知:

D是△ABC的∠BAC的外角的平分线AD上的任一点,连接DB、DC。

求证:

BD+CD>AB+AC。

(二)、角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

例1.如图2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。

求证:

∠ADC+∠B=180 

分析:

可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

例2.如图2-2,在△ABC中,∠A=90 ,AB=AC,∠ABD=∠CBD。

求证:

BC=AB+AD

分析:

过D作DE⊥BC于E,则AD=DE=CE,则构造出全等三角形,从而得证。

此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。

例3.已知如图2-3,△ABC的角平分线BM、CN相交于点P。

求证:

∠BAC的平分线也经过点P。

分析:

连接AP,证AP平分∠BAC即可,也就是证P到AB、AC的距离相等。

练习:

1.如图2-4∠AOP=∠BOP=15 ,PC//OA,PD⊥OA,

如果PC=4,则PD=()

A4B3C2D1

2.已知在△ABC中,∠C=90 ,AD平分∠CAB,CD=1.5,DB=2.5.求AC。

五、延长已知边构造三角形:

例如:

如图6:

已知AC=BD,AD⊥AC于A,BC⊥BD于B,

求证:

AD=BC

第2页

六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

例如:

如图7:

AB∥CD,AD∥BC求证:

AB=CD。

八、连接已知点,构造全等三角形。

例如:

已知:

如图9;AC、BD相交于O点,且AB=DC,AC=BD,求证:

∠A=∠D。

1.已知

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1