小学六年级数学应用题分类答案及详解.docx

上传人:b****7 文档编号:11396181 上传时间:2023-02-28 格式:DOCX 页数:21 大小:25.61KB
下载 相关 举报
小学六年级数学应用题分类答案及详解.docx_第1页
第1页 / 共21页
小学六年级数学应用题分类答案及详解.docx_第2页
第2页 / 共21页
小学六年级数学应用题分类答案及详解.docx_第3页
第3页 / 共21页
小学六年级数学应用题分类答案及详解.docx_第4页
第4页 / 共21页
小学六年级数学应用题分类答案及详解.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

小学六年级数学应用题分类答案及详解.docx

《小学六年级数学应用题分类答案及详解.docx》由会员分享,可在线阅读,更多相关《小学六年级数学应用题分类答案及详解.docx(21页珍藏版)》请在冰豆网上搜索。

小学六年级数学应用题分类答案及详解.docx

小学六年级数学应用题分类答案及详解

小学六年级数学应用题分类(答案及详解)

公约公倍问题

需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。

  【数量关系】绝大多数要用最大公约数、最小公倍数来解答。

  【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。

最大公约数和最小公倍数的求法,最常用的是“短除法”。

  例1、一硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。

问正方形的边长是多少?

  解:

硬纸板的长和宽的最大公约数就是所求的边长。

  60和56的最大公约数是4。

  答:

正方形的边长是4厘米。

  例2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?

  解:

要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。

因为问至少要多少时间,所以应是36、30、48的最小公倍数。

36、30、48的最小公倍数是720。

  答:

至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

  例3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?

  解:

相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。

  所以,至少应植树(60+72+96+84)÷12=26(棵)

  答:

至少要植26棵树。

  例4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。

又知棋子总数在150到200之间,求棋子总数。

  解:

如果从总数中取出1个,余下的总数便是4、5、6的公倍数。

因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为

  60×3+1=181(个)

  答:

棋子的总数是181个。

行船问题

行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

  【数量关系】

  (顺水速度+逆水速度)÷2=船速

  (顺水速度-逆水速度)÷2=水速

  顺水速=船速×2-逆水速=逆水速+水速×2

  逆水速=船速×2-顺水速=顺水速-水速×2

  【解题思路和方法】大多数情况可以直接利用数量关系的公式。

  例1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

  解:

由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

  船的逆水速为25-15=10(千米)

  船逆水行这段路程的时间为320÷10=32(小时)

  答:

这只船逆水行这段路程需用32小时。

  例2、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

  解:

由题意得甲船速+水速=360÷10=36

  甲船速-水速=360÷18=20

  可见(36-20)相当于水速的2倍,

  所以,水速为每小时(36-20)÷2=8(千米)

  又因为,乙船速-水速=360÷15,

  所以,乙船速为360÷15+8=32(千米)

  乙船顺水速为32+8=40(千米)

  所以,乙船顺水航行360千米需要

  360÷40=9(小时)

  答:

乙船返回原地需要9小时。

  例3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

  解:

这道题可以按照流水问题来解答。

  

(1)两城相距多少千米?

  (576-24)×3=1656(千米)

  

(2)顺风飞回需要多少小时?

  1656÷(576+24)=2。

76(小时)

  列成综合算式[(576-24)×3]÷(576+24)=2.76(小时)

  答:

飞机顺风飞回需要2.76小时。

工程问题

工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

  【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

  工作量=工作效率×工作时间

  工作时间=工作量÷工作效率

  工作时间=总工作量÷(甲工作效率+乙工作效率)

  【解题思路和方法】变通后可以利用上述数量关系的公式。

  例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

  解:

题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。

  由于甲队独做需10天完成,那么每天完成这项工程的1/10;

  乙队单独做需15天完成,每天完成这项工程的1/15;

  两队合做,每天可以完成这项工程的(1/10+1/15)。

  由此可以列出算式:

1÷(1/10+1/15)=1÷1/6=6(天)

  答:

两队合做需要6天完成。

  例2、一批零件,甲独做6小时完成,乙独做8小时完成。

现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

  解:

设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

  因为二人合做需要[1÷(1/6+1/8)]小时,这个时间,甲比乙多做24个零件,所以

  

(1)每小时甲比乙多做多少零件?

  24÷[1÷(1/6+1/8)]=7(个)

  

(2)这批零件共有多少个?

  7÷(1/6-1/8)=168(个)

  答:

这批零件共有168个。

  解二:

上面这道题还可以用另一种方法计算:

  两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

  由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

  所以,这批零件共有24÷1/7=168(个)

例3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

  解:

必须先求出各人每小时的工作效率。

如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

  60÷12=560÷10=660÷15=4

  因此余下的工作量由乙丙合做还需要

  (60-5×2)÷(6+4)=5(小时)

  答:

还需要5小时才能完成。

  例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。

当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

  解:

注(排)水问题是一类特殊的工程问题。

往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间水的流量就是工作效率。

  要2小时将水池注满,即要使2小时的进水量与排水量之差刚好是一池水。

为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

  只要设某一个量为单位1,其余两个量便可由条件推出。

  我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

  每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

  即一个排水管与每个进水管的工作效率相同。

由此可知

  一池水的总工作量为1×4×5-1×5=15

  又因为在2小时,每个进水管的注水量为1×2,

  所以,2小时注满一池水

  至少需要多少个进水管?

(15+1×2)÷(1×2)=8。

5≈9(个)

  答:

至少需要9个进水管。

正反比例问题

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例应用题是正比例意义和解比例等知识的综合运用。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例应用题是反比例的意义和解比例等知识的综合运用。

  【数量关系】判断正比例或反比例关系是解这类应用题的关键。

许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

  【解题思路和方法】解决这类问题的重要方法是:

把分率(倍数)转化为比,应用比和比例的性质去解应用题。

  正反比例问题与前面讲过的倍比问题基本类似。

  例1、修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

  解:

由条件知,公路总长不变。

  原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

  现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

  比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

  答:

这条公路总长3600米。

  例2、晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

  解:

做题效率一定,做题数量与做题时间成正比例关系

  设91分钟可以做X应用题则有28∶4=91∶X

  28X=91×4X=91×4÷28X=13

  答:

91分钟可以做13道应用题。

  例3、亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

  解:

书的页数一定,每天看的页数与需要的天数成反比例关系

  设X天可以看完,就有24∶36=X∶15

  36X=24×15X=10

  答:

10天就可以看完。

按比例分配问题

所谓按比例分配,就是把一个数按照一定的比分成若干份。

这类题的已知条件一般有两种形式:

一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

  【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。

总份数=比的前后项之和

  【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

  例1、学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

  解:

总份数为47+48+45=140

  一班植树560×47/140=188(棵)

  二班植树560×48/140=192(棵)

  三班植树560×45/140=180(棵)

  答:

一、二、三班分别植树188棵、192棵、180棵。

  例2、用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。

三条边的长各是多少厘米?

  解:

3+4+5=1260×3/12=15(厘米)

  60×4/12=20(厘米)

  60×5/12=25(厘米)

  答:

三角形三条边的长分别是15厘米、20厘米、25厘米。

  例3、从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

  解:

如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。

如果用按比例分配的方法解,则很容易得到

  1/2∶1/3∶1/9=9∶6∶2

  9+6+2=1717×9/17=9

  17×6/17=617×2/17=2

  答:

大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

方阵问题

将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

  【数量关系】

  

(1)方阵每边人数与四周人数的关系:

  四周人数=(每边人数-1)×4

  每边人数=四周人数÷4+1

  

(2)方阵总人数的求法:

  实心方阵:

总人数=每边人数×每边人数

  空心方阵:

总人数=(外边人数)?

-(边人数)?

  边人数=外边人数-层数×2

  (3)若将空心方阵分成四个相等的矩形计算,则:

  总人数=(每边人数-层数)×层数×4

  【解题思路和方法】方阵问题有实心与空心两种。

实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

  例1、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

  解:

22×22=484(人)

  答:

参加体操表演的同学一共有484人。

  例2、有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

  解:

10-(10-3×2)=84(人)

  答:

全方阵84人。

  例3、有一队学生,排成一个中空方阵,最外层人数是52人,最层人数是28人,这队学生共多少人?

  解:

(1)中空方阵外层每边人数=52÷4+1=14(人)

  

(2)中空方阵层每边人数=28÷4-1=6(人)

  (3)中空方阵的总人数=14×14-6×6=160(人)

  答:

这队学生共160人。

  例4、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

  解:

(1)纵横方向各增加一层所需棋子数=4+9=13(只)

  

(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)

  (3)原有棋子数=7×7-9=40(只)

  答:

棋子有40只。

  例5、有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。

这个树林一共有多少棵树?

  解:

第一种方法:

1+2+3+4+5=15(棵)

  第二种方法:

(5+1)×5÷2=15(棵)

  答:

这个三角形树林一共有15棵树。

追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之,后面的追上前面的物体。

这类应用题就叫做追及问题。

  【数量关系】

  追及时间=追及路程÷(快速-慢速)

  追及路程=(快速-慢速)×追及时间

  【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

  解:

(1)劣马先走12天能走多少千米?

75×12=900(千米)

  

(2)好马几天追上劣马?

900÷(120-75)=20(天)

  列成综合算式75×12÷(120-75)=900÷45=20(天)

  答:

好马20天能追上劣马。

  例2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

  解:

小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。

又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,

  所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)

  答:

小亮的速度是每秒3米。

例3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

  解:

敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。

由此推知

  追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)

  答:

解放军在11小时后可以追上敌人。

  例4、一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

  解:

这道题可以由相遇问题转化为追及问题来解决。

从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,

  这个时间为16×2÷(48-40)=4(小时)

  所以两站间的距离为(48+40)×4=352(千米)

  列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)

  答:

甲乙两站的距离是352千米。

  例5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?

  解:

要求距离,速度已知,所以关键是求出相遇时间。

  从题中可知,在相同时间(从出发到相遇)哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,

  那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)

  家离学校的距离为90×12-180=900(米)

  答:

家离学校有900米远。

  例6、亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。

后来算了一下,如果亮从家一开始就跑步,可比原来步行早9分钟到学校。

求亮跑步的速度。

  解:

手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

  如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

  所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)

  跑步1千米所用时间为15-[9-(10-5)]=11(分钟)

  跑步速度为每小时1÷11/60=5.5(千米)

  答:

亮跑步速度为每小时5.5千米。

倍比问题

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

  【数量关系】

  总量÷一个数量=倍数

  另一个数量×倍数=另一总量

  【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

  例1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

  解:

(1)3700千克是100千克的多少倍?

3700÷100=37(倍)

  

(2)可以榨油多少千克?

40×37=1480(千克)

  列成综合算式40×(3700÷100)=1480(千克)

  答:

可以榨油1480千克。

  例2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

  解:

(1)48000名是300名的多少倍?

48000÷300=160(倍)

  

(2)共植树多少棵?

400×160=64000(棵)

  列成综合算式400×(48000÷300)=64000(棵)

  答:

全县48000名师生共植树64000棵。

  例3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?

全县16000亩果园共收入多少元?

  解:

(1)800亩是4亩的几倍?

800÷4=200(倍)

  

(2)800亩收入多少元?

11111×200=2222200(元)

  (3)16000亩是800亩的几倍?

16000÷800=20(倍)

  (4)16000亩收入多少元?

2222200×20=44444000(元)

  答:

全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

溶液浓度问题

在生产和生活中,我们经常会遇到溶液浓度问题。

这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。

例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。

溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

  【数量关系】

  溶液=溶剂+溶质

  浓度=溶质÷溶液×100%

  【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

  例1、爷爷有16%的糖水50克,

(1)要把它稀释成10%的糖水,需加水多少克?

(2)若要把它变成30%的糖水,需加糖多少克?

  解:

(1)需要加水多少克?

50×16%÷10%-50=30(克)

  

(2)需要加糖多少克?

50×(1-16%)÷(1-30%)-50=10(克)

  答:

(1)需要加水30克,

(2)需要加糖10克。

  例2、要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?

  解:

假设全用30%的糖水溶液,那么含糖量就会多出

  600×(30%-25%)=30(克)

  这是因为30%的糖水多用了。

  于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。

  这样,每“换掉”100克,就会减少糖100×(30%-15%)=15(克)所以需要“换掉”30%的溶液(即“换上”15%的溶液)100×(30÷15)=200(克)

  由此可知,需要15%的溶液200克。

  需要30%的溶液600-200=400(克)

  答:

需要15%的糖水溶液200克,需要30%的糖水400克。

最值问题

科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。

这类应用题叫做最值问题。

  【数量关系】一般是求最大值或最小值。

  【解题思路和方法】按照题目的要求,求出最大值或最小值。

  例1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

  解:

先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。

再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。

这样做,用的时间最少,为9分钟。

  答:

最少需要9分钟。

  例2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。

现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?

  解:

我们采用尝试比较的方法来解答。

  集中到1号场总费用为1×200×10+1×40

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1