语音信号的设计.docx

上传人:b****5 文档编号:5856401 上传时间:2023-01-01 格式:DOCX 页数:34 大小:525.71KB
下载 相关 举报
语音信号的设计.docx_第1页
第1页 / 共34页
语音信号的设计.docx_第2页
第2页 / 共34页
语音信号的设计.docx_第3页
第3页 / 共34页
语音信号的设计.docx_第4页
第4页 / 共34页
语音信号的设计.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

语音信号的设计.docx

《语音信号的设计.docx》由会员分享,可在线阅读,更多相关《语音信号的设计.docx(34页珍藏版)》请在冰豆网上搜索。

语音信号的设计.docx

语音信号的设计

 

河南城建学院

本科毕业论文(设计)

 

题目语音信号的抑噪电路设计

指导教师胡玥职称讲师

 

学生姓名田凤娜学号091210208

专业电气工程及其自动化班级电气二班

院(系)电气与电子信息工程系

完成时间2012年5月7号

 

语音信号的抑噪路设计

摘要

滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。

利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词:

MATLAB,滤波器,频域分析,滤波

 

BasedontheMATLABspectrumanalysisandsignaldenoising

ABSTRACT

Filterdesignindigitalsignalprocessinginoccupiesanextremelyimportantstatus,FIRdigitalfiltersandfilterIIRfilteristheimportantcomponent.MATLABsignalprocessingtoolboxcaneffectivelydesignofdigitalfilter.SubjecthavenoisebasedonMATLABspeechsignalprocessing,thedesignandimplementationofintegrateduseofdigitalsignalprocessingtheoryknowledgeofspeechsignalwithnoiseaddingtimedomainandfrequencydomainanalysisandfiltering.Throughtheoreticalderivationcorrespondingconclusionasaprogrammingtool,usingMATLABforcomputerimplementation.Inthedesignandimplementationofprocess,USESwindowfunctionmethodtodesignFIRdigitalfilters,withbartleavenworth,chebyshevandbilinearanshiIIRdigitalfilter,anddesignMATLABastheauxiliarytoolcompletedesignofcomputingandgraphicsdrawing.Throughthedesignofthefilterselvesorsimulationandfrequencycharacteristicswereanalyzed,usingMATLABsignalprocessingtoolboxthatcaneffectivelyquicklydesignFIRandIIRdigitalfilters,processissimpleandconvenient,resultsofvariousperformanceindicatorsareasspecifiedrequirements.

KEYWORDS:

MATLAB,filter,frequencydomainanalysis,filtering

1.绪论

1.1数字滤波器的研究背景与意义

当今,数字信号处理[1](DSP:

DigtalSignalProcessing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:

它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。

数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。

上述这些信号大部分是模拟信号,也有小部分是数字信号。

模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。

大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。

因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。

数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。

例如,对数字信号经行滤波以限制他的频带或滤除噪音和干扰,或将他们与其他信号进行分离;对信号进行频谱分析或功率谱分析以了解信号的频谱组成,进而对信号进行识别;对信号进行某种变换,使之更适合于传输,存储和应用;对信号进行编码以达到数据压缩的目的,等等。

数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。

无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。

在所有的电子系统中,使用最多技术最复杂的要算数字滤波器了。

数字滤波器的优劣直接决定产品的优劣。

1.2数字滤波器的应用现状与发展趋势

在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。

根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。

在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。

(1)语音处理

语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。

该领域主要包括5个方面的内容:

第一,语音信号分析。

即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。

即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。

即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。

即从噪音或干扰中提取被掩盖的语音信号。

第五,语音编码。

主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。

近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。

(2)图像处理

数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。

(3)通信

在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。

信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。

其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。

(4)电视

数字电视取代模拟电视已是必然趋势。

高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。

视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。

(5)雷达

雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。

告诉数字器件的出现促进了雷达信号处理技术的进步。

在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。

雷达信号的数字滤波器是当今十分活跃的研究领域之一。

(6)声纳

声纳信号处理分为两大类,即有源声纳信号处理和无源声纳信号处理,有源声纳系统涉及的许多理论和技术与雷达系统相同。

例如,他们都要产生和发射脉冲式探测信号,他们的信号处理任务都主要是对微弱的目标回波进行检测和分析,从而达到对目标进行探测、定位、跟踪、导航、成像显示等目的,他们要应用到的主要信号处理技术包括滤波、门限比较、谱估计等。

(7)生物医学信号处理

数字滤波器在医学中的应用日益广泛,如对脑电图和心电图的分析、层析X射线摄影的计算机辅助分析、胎儿心音的自适应检测等。

(8)音乐

数字滤波器为音乐领域开辟了一个新局面,在对音乐信号进行编辑、合成、以及在音乐中加入交混回响、合声等特殊效果特殊方面,数字滤波技术都显示出了强大的威力。

数字滤波器还可用于作曲、录音和播放,或对旧录音带的音质进行恢复等。

(9)其他领域[5]

数字滤波器的应用领域如此广泛,以至于想完全列举他们是根本不可能的,除了以上几个领域外,还有很多其他的应用领域。

例如,在军事上被大量应用于导航、制导、电子对抗、战场侦察;在电力系统中被应用于能源分布规划和自动检测;在环境保护中被应用于对空气污染和噪声干扰的自动监测,在经济领域中被应用于股票市场预测和经济效益分析,等等。

1.3数字滤波器的实现方法分析

数字滤波器的实现[6],大体上有如下几种方法:

(1)在通用的微型机上用软件来实现。

软件可以由使用者自己编写或使用现成的。

自IEEEDSPComm.于1979年推出第一个信号处理软件包以来,国外的研究机构、公司也陆续推出不同语言不同用途的信号处理软件包。

这种实现方法速度较慢,多用于教学与科研。

(2)用单片机来实现。

目前单片机的发展速度很快,功能也很强依靠单片机的硬件环境和信号处理软件可用于工程实际,如数字控制、医疗仪器等。

(3)利用专门用于信号处理的DSP片来实现。

DSP芯片较之单片机有着更为突出的优点,如内部带有乘法器、累加器,采用流水线工作方式及并行结构,多总线,速度快,配有适于信号处理的指令等,DSP芯片的问世及飞速发展,为信号处理技术应用于工程实际提供了可能。

1.4本章小结

  数字滤波器精确度高、使用灵活、可靠性高,具有模拟设备所没有的许多优点,已广泛地应用于各个科学技术领域,例如数字电视、语音、通信、雷达、声纳、遥感、图像、生物医学以及许多工程应用领域。

随着信息时代数字时代的到来,数字滤波技术已经成为一门极其重要的学科和技术领域。

以往的滤波器大多采用模拟电路技术,但是,模拟电路技术存在很多难以解决的问题,例如,模拟电路元件对温度的敏感性,等等。

而采用数字技术则避免很多类似的难题,当然数字滤波器在其他方面也有很多突出的优点,在前面部分已经提到,这些都是模拟技术所不能及的,所以采用数字滤波器对信号进行处理是目前的发展方向。

2基于数字滤波器的语音信号的处理

选择一个语音信号作为分析的对象,或录制一段语音信号,对其进行频谱分析;利用MATLAB中的随机函数产生噪声加入到语音信号中,模仿语音信号被污染,并对其进行频谱分析;设计FIR和IIR数字滤波器,并对被噪声污染的语音信号进行滤波,分析滤波后信号的时域和频域特征,回放语音信号;最后,设计一个信号处理系统界面。

在所设计的系统界面上可以选择滤波器的类型。

2.1语音信号的采集

利用PC机上的声卡和WINDOWS操作系统可以进行数字信号的采集。

将话筒输入计算机的语音输入插口上,启动录音机。

按下录音按钮,接着对话筒说话“语音信号处理”,说完后停止录音,屏幕左侧将显示所录声音的长度。

点击放音按钮,可以实现所录音的重现。

以文件名“speech”保存入g:

\MATLAB\work中。

可以看到,文件存储器的后缀默认为.wav,这是WINDOWS操作系统规定的声音文件存的标准。

基于PC机的语音信号采集过程:

通过计算机录音系统录制1秒:

语音采集过程

图3录音过程截图

3.滤波器的设计原理

3.1数字滤波器的基本设计思想及步骤

语音信号滤波去噪——使用脉冲不变响应法设计的巴特沃斯滤波器的设计流程如图2所示:

 

 

图1脉冲响应不变法巴特沃斯滤波器对语音信号去噪流程图

 

一个数字滤波器可用它的系统函数H(z)来描述

或者用一个N阶差分方程来描述,即

因此,设计一个数字滤波器,实质上是寻找一组系数[ak,br],使其性能满足预定的技术要求,它是一个数学逼近问题,显然它与模拟滤波器的设计方法是完全一致的,只不过模拟滤波器的设计是在Z平面上用数学逼近方法寻找近似于所需特性的H(s),而数字滤波器的设计则在Z平面上寻找合适的H(z)。

确定了[ak,br],剩下的问题是设计一个具体的网络结构去实现它。

可见数字滤波器设计的基本步骤如下:

(1)确定指标

在设计一个数字滤波器之前,必须首先根据工程实际的需要确定数字滤波器的技术指标。

在很多实际应用中,数字滤波器常常用来实现选频操作。

因此,指标一般在频域中给出,诸如通带截止频率wp、阻带截止频率ws、阻带内允许的最大衰减ap、阻带内允许的最小衰减as等。

此外还必须确定采样周期T或采样频率Fs。

(2)逼近

确定了技术指标后,就可以建立一个目标数字滤波器模型。

通常采用理想的数字滤波器模型。

之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。

(3)性能分析和计算机仿真

上两步的结果是得到以系统函数H(z)或单位冲激响应h(n)描述的数字滤波器。

根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。

数字滤波器根据其单位冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。

IIR滤波器的特征是具有无限持续时间冲激响应。

这种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。

FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。

数字滤波器的设计方法有多种,如脉冲响应不变法、双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。

IIR数字滤波器设计方法也有很多种,但它们可归纳为两类:

一类是模拟—数字转换法,先设计一个合适的模拟滤波器,然后变换成满足原定要求的数字滤波器,这种方法简单易行,方便准确,但它只能用来设计低通、高通、带通、带阻等选频滤波器;另一类是直接设计法或称之为计算机辅助设计法,这是一种最优化设计法,其适合于设计复杂的数字滤波器。

3.2设计FIR和IIR数字滤波器

数字滤波器,是数字信号处理中及其重要的一部分。

随着信息时代和数字技术的发展,受到人们越来越多的重视。

数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。

数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应(FIR,FiniteImpulseResponse)滤波器和无限冲激响应(IIR,InfiniteImpulseResponse)滤波器。

FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H(z)在处收敛,极点全部在z=0处(因果系统),因而只能用较高的阶数达到高的选择性。

FIR数字滤波器的幅频特性精度较之于IIR数字滤波器低,但是线性相位,就是不同频率分量的信号经过fir滤波器后他们的时间差不变,这是很好的性质。

FIR数字滤波器是有限的单位响应也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。

FIR滤波器因具有系统稳定,易实现相位控制,允许设计多通带(或多阻带)滤波器等优点收到人们的青睐。

IIR滤波器采用递归型结构,即结构上带有反馈环路。

IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。

同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。

本文研究的主要内容中是利用一段语音信号对其进行加噪处理,然后利用FIR和IRR两种滤波器对加有噪声的语音信号进行过滤和频谱分析,画出滤波之后的频谱图与时域波形,并对信号滤波前后进行分析比较,分析信号的变化,来进行比较IIR与FIR两种滤波器对语音信号的处理的特点。

IIR滤波器和FIR滤波器的设计方法完全不同。

IIR滤波器设计方法有间接法和直接法,间接法是借助于模拟滤波器的设计方法进行的。

其设计步骤是:

先设计过渡模拟滤波器得到系统函数H(s),然后将H(s)按某种方法转换成数字滤波器的系统函数H(z)。

FIR滤波器比鞥采用间接法,常用的方法有窗函数法、频率采样发和切比雪夫等波纹逼近法。

对于线性相位滤波器,经常采用FIR滤波器。

对于数字高通、带通滤波器的设计,通用方法为双线性变换法。

可以借助于模拟滤波器的频率转换设计一个所需类型的过渡模拟滤波器,再经过双线性变换将其转换策划那个所需的数字滤波器。

具体设计步骤如下:

(1)确定所需类型数字滤波器的技术指标。

(2)将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/Ttan(0.5ω)

(3)将相应类型的模拟滤波器技术指标转换成模拟低通滤波器技术指标。

(4)设计模拟低通滤波器。

(5)通过频率变换将模拟低通转换成相应类型的过渡模拟滤波器。

(6)采用双线性变换法将相应类型的过渡模拟滤波器转换成所需类型的数字滤波器。

我们知道,脉冲响应不变法的主要缺点是会产生频谱混叠现象,使数字滤波器的频响偏离模拟滤波器的频响特性。

为了克服之一缺点,可以采用双线性变换法。

下面我们总结一下利用模拟滤波器设计IIR数字低通滤波器的步骤:

(1)确定数字低通滤波器的技术指标:

通带边界频率、通带最大衰减,阻带截止频率、阻带最小衰减。

(2)将数字低通滤波器的技术指标转换成相应的模拟低通滤波器的技术指标。

(3)按照模拟低通滤波器的技术指标设计及过渡模拟低通滤波器。

(4)用双线性变换法,模拟滤波器系统函数转换成数字低通滤波器系统函数。

如前所述,IIR滤波器和FIR滤波器的设计方法有很大的区别。

下面我们着重介绍用窗函数法设计FIR滤波器的步骤。

如下:

(1)根据对阻带衰减及过渡带的指标要求,选择串窗数类型(矩形窗、三角窗、汉宁窗、哈明窗、凯塞窗等),并估计窗口长度N。

先按照阻带衰减选择窗函数类型。

原则是在保证阻带衰减满足要求的情况下,尽量选择主瓣的窗函数。

(2)构造希望逼近的频率响应函数。

(3)计算h(n).。

(4)加窗得到设计结果。

接下来,我们根据语音信号的特点给出有关滤波器的技术指标:

①低通滤波器的性能指标:

fp=1000Hz,fc=1200Hz,As=100db,Ap=1dB

②高通滤波器的性能指标:

fp=3500Hz,fc=4000Hz,As=100dB,Ap=1dB;

③带通滤波器的性能指标:

fp1=1200Hz,fp2=3000hZ,fc1=1000Hz,fc2=3200Hz,As=100dB,Ap=1dB

在Matlab中,可以利用函数fir1设计FIR滤波器,利用函数butter,cheby1和ellip设计IIR滤波器,利用Matlab中的函数freqz画出各步步器的频率响应。

hn=fir1(M,wc,window),可以指定窗函数向量window。

如果缺省window参数,则fir1默认为哈明窗。

其中可选的窗函数有RectangularBarlrttHammingHannBlackman窗,其相应的都有实现函数。

MATLAB信号处理工具箱函数buttpbuttorbutter是巴特沃斯滤波器设计函数,其有5种调用格式,本课程设计中用到的是[N,wc]=butter(N,wc,Rp,As,’s’),该格式用于计算巴特沃斯模拟滤波器的阶数N和3dB截止频率wc。

MATLAB信号处理工具箱函数cheblap,cheblord和cheeby1是切比雪夫I型滤波器设计函数。

我们用到的是cheeby1函数,其调用格式如下:

[B,A]=cheby1(N,Rp,wpo,’ftypr’)

[B,A]=cheby1(N,Rp,wpo,’ftypr’,’s’)

函数butter,cheby1和ellip设计IIR滤波器时都是默认的双线性变换法,所以在设计滤波器时只需要代入相应的实现函数即可。

下面我们将给出FIR和IIR数字滤波器的主要程序。

%=========================IIR低通滤波器=======================

wp=2*pi*Fp/Ft;

ws=2*pi*Fs/Ft;

fp=2*Ft*tan(wp/2);

fs=2*Fs*tan(wp/2);

[n11,wn11]=buttord(wp,ws,1,50,'s');%求低通滤波器的阶数和截止频率

[b11,a11]=butter(n11,wn11,'s');%求S域的频率响应的参数

[num11,den11]=bilinear(b11,a11,0.5);%双线性变换实现S域到Z域的变换

[h,w]=freqz(num11,den11);%根据参数求出频率响应

plot(w*8000*0.5/pi,abs(h));

legend('用butter设计');

图3IIR低通滤波器

%======================IIR带通==========================

wp1=tan(pi*Fp1/Ft);%带通到低通滤波器的转换

wp2=tan(pi*Fp2/Ft);

ws1=tan(pi*Fs1/Ft);

ws2=tan(pi*Fs2/Ft);

w=wp1*wp2/ws2;

bw=wp2-wp1;

wp=1;

ws=(wp1*wp2-w.^2)/(bw*w);

[n12,wn12]=buttord(wp,ws,1,50,'s');%求低通滤波器阶数和截止频率

[b12,a12]=butter(n12,wn12,'s');%求S域

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 思想汇报心得体会

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1