北京中考专题复习几何综合.docx

上传人:b****3 文档编号:924753 上传时间:2022-10-14 格式:DOCX 页数:22 大小:1.52MB
下载 相关 举报
北京中考专题复习几何综合.docx_第1页
第1页 / 共22页
北京中考专题复习几何综合.docx_第2页
第2页 / 共22页
北京中考专题复习几何综合.docx_第3页
第3页 / 共22页
北京中考专题复习几何综合.docx_第4页
第4页 / 共22页
北京中考专题复习几何综合.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

北京中考专题复习几何综合.docx

《北京中考专题复习几何综合.docx》由会员分享,可在线阅读,更多相关《北京中考专题复习几何综合.docx(22页珍藏版)》请在冰豆网上搜索。

北京中考专题复习几何综合.docx

北京中考专题复习几何综合

知识框架

几何综合题型一般以基本图形(正方形、特殊平行四边形、等边、等腰、直角三角形等)为载体,考查运用图形变换(平移、旋转、轴对称)分析图形中基本量之间的数量关系的探究过程。

涉及初中数学九大几何模型:

1、中点类辅助线

2、角平分线、垂直平分线类辅助线

3、相似模型

4、旋转之手拉手模型

5、旋转之对角互补模型

6、旋转之半角模型

7、旋转之构造等边三角形

8、旋转之费马点模型

9、最短距离问题

解题思路:

从复杂的图形中“抽"出简单图形,在简单图形中进行逻辑推导,应用相关几何模型,找到解题思路。

知识梳理

中点类辅助线

见中点—-—倍长中线:

凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

在△ABC中,AD是BC边中线。

方式1:

直接倍长,(图1):

延长AD到E,使DE=AD,连接BE

例:

已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:

AF=EF

 

方式2:

间接倍长

1)(图2)作CF⊥AD于F,作BE⊥AD的延长线于E,连接BE

2)(图3)延长MD到N,使DN=MD,连接CD

 

例:

如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小。

 

方式3:

平行线间线段有中点

如图:

AD∥BE,F为DE中点.可构造8字全等△ADF≌△HEF。

例:

如图,在矩形ABCD中,BD=BE,F为DE中点。

试探究AF与CF之间的位置关系。

例:

如图,在平行四边形ABCD中,BC=2AB,M为AD中点,CE⊥AB。

求证:

∠EMD=3∠MEA.

见多个中点————构造中位线:

已知三角形的两边有中点,可以连接这两个中点构造中位线;

已知一边中点,可以在另一边上取中点,连接构造中位线;

已知一边中点,过中点作平行线可构造相似三角形.

例:

如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。

求证:

∠BGE=∠CHE。

见等腰三角形底边中点--——连接顶点与中点,构造三线合一

直角三角形斜边中线:

直角三角形中,有斜边中点时常作斜边中线;有斜边的倍分关系线段时,也常常作斜边中线

如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则得CD=AD=BD,从而构造出等腰三角形.

角平分线、垂直平分线类辅助线

角平分线:

a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的题目辅助线的作法,一般有四种。

1由角的平分线上的一点向角的一边或两边作垂线,利用角平分线性质。

2以角的平分线为轴,将图形翻折,在角的平分线两侧构造全等三角形。

3当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,利用等腰三角形的“三线合一” 

4过角的一边上的点,作另一边的平行线,构成等腰三角形——“角平分线+平行,必出等腰”

例:

如下图,在△ABC中,∠A的平分线AD交BC于点D,且AB=AD,CM⊥AD交AD的延长线于点M.

垂直平分线:

a、对称性;b、垂直平分线上的点到线段两端点的距离相等.

例:

如图,Rt△ABC中,∠ACB=90°,AD平分∠BAC,作AD的垂直平分线EF交AD于点E,交BC的延长线于点F,交AB于点G,交AC于点H

(1)依题意补全图形

(2)求证:

∠BAD=∠BFG

(3)试猜想AB,FB和FD之间的数量关系并进行证明

 

相似模型

平行A字型、8字型:

斜交A字型、8字型:

共享型(母子型):

双共享型:

双A字型:

一线三等角型:

旋转之手拉手模型

手拉手全等

特点:

由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点

结论:

(1)△ABC≌△AB'C’

(2)∠BOB’=∠BAB’(3)OA平分∠BOC’

例:

如图在直线的同一侧作两个等边三角形与,连结与,证明:

(1)

(2)

(3)与之间的夹角为

(4)

(5)

(6)平分

(7)

手拉手相似

特点:

由两个相似三角形所组成,并且一组等角的顶点为公共顶点

结论:

(1)△AOC∽△BOD

(2)∠AEB=∠AOB

例:

如图,两个正方形ABCD与DEFG,连结CE、AG,二者相交于点H.

求:

(1)AG=CE

(2)AG与CE之间的夹角为多少度?

(3)HD平分∠AHE

 

旋转之对角互补模型

对角互补,邻边相等。

(全等型-90°)

【条件】:

①∠AOB=∠DCE=90°;②OC平分∠AOB

【结论】:

①CD=CE;②OD+OE=OC;③

※当∠DCE的一边交AO的延长线于D时:

以上三个结论:

①CD=CE;②OE-OD=OC;③

(全等型-120°)(全等型—任意角)

【条件】:

①∠AOB=2∠DCE=120°;②OC平分∠AOB

【结论】:

①CD=CE;②OD+OE=OC;③

对角互补模型总结:

①常见初始条件:

四边形对角互补,注意两点:

四点共圆有直角三角形斜边中线;

②初始条件“角平分线"与“两边相等"的区别;

③注意OC平分∠AOB时,

∠CDE=∠CED=∠COA=∠COB如何引导?

 

旋转之半角模型

角含半角要旋转:

构造两次全等

【条件】:

①正方形ABCD;②∠EAF=45°;

【结论】:

①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半;

也可以这样:

【条件】:

①正方形ABCD;②EF=DF+BE;

【结论】:

①∠EAF=45°;

【条件】:

①正方形ABCD;②∠EAF=45°;

【结论】:

①EF=DF—BE;

【条件】:

①Rt△ABC;②∠DAE=45°;

【结论】:

若∠DAE旋转到△ABC外部时,结论仍然成立

旋转之构造等边三角形

等边三角形是一个具有丰富性质的完美图形,这些性质为我们解几何题提供了新的理论依据,所以寻找、发现等边三角形是解一些几何题的关键。

例:

在四边形ABCD中,∠ABC=60°,AB=BC,∠ADC=30°

证明:

 

分析:

待证结论让我们联想到勾股定理,需要通过添加辅助线将AD、CD(作为直角边)和BD(作为斜边)集中到一个直角三角形中。

 

 

例:

如图,△ABC是等边三角形,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F

(1)∠BFE的度数是

(2)如果,那么

(3)如果时,请用含n的式子表示AF,BF的数量关系,并证明

 

例:

如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DE,AE,BD交于点F

(1)求∠AFB的度数

(2)求证:

BF=EF

(3)连接CF,直接用等式表示线段

AB,CF,EF的数量关系

 

旋转之费马点模型

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个.

问题:

如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?

图文解析:

如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.

则△CPP′为等边三角形,CP=PP′,PA=P′A′,

∴PA+PB+PC=P′A′+PB+PP′BC′.

∵点A′可看成是线段CA绕C点顺时针旋转60°而得到的定点,BA′为定长。

∴当B、P、P′、A′四点在同一直线上时,PA+PB+PC最小。

∴∠APC=∠A′P′C=180°-∠CP′P=180°—60°=120°,

∠BPC=180°—∠P′PC=180°-60°=120°,

∠APC=360°—∠BPC-∠APC=360°-120°-120°=120°.

因此,当△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°,所以三角形的费马点也称为三角形的等角中心。

当有一内角大于或等于120°时,所求的P点就是钝角的顶点.

费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.

例:

四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转600得到BN,连接EN、AM、CM。

(1)求证:

△AMB≌△ENB;

(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;

 

最短距离问题

三角形——--两边之和大于第三边型

 

1。

直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。

2。

直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小.

3。

点P是∠MON内的一点,分别在OM,ON上作点A,B.使△PAB的周长最小。

两点之间的距离--——线段最短型

 

4.点P,Q为∠MON内的两点,分别在OM,ON上作点A,B.使四边形PAQB的周长最小。

点到直线的距离-—--垂线段最短型

 

5..如图,点A是∠MON内的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。

 

典例精讲

【2018西城期末】如图1,在Rt△AOB中,∠AOB=90°,∠OAB=30°,点C在线段OB上,OC=2BC,AO边上的一点D满足∠OCD=30°.将△OCD绕点O逆时针旋转α度(90°〈α〈180°)得到△,C,D两点的对应点分别为点,,连接,,取的中点M,连接OM.

(1)如图2,当∥AB时,α=________°,此时OM和之间的位置关系为________;

(2)画图探究线段OM和之间的位置关系和数量关系,并加以证明.

 

 

【2018海淀期末】在△ABC中,∠A90°,ABAC.

(1)如图1,△ABC的角平分线BD,CE交于点Q,请判断“”是否正确:

________(填“是”或“否”);

(2)点P是△ABC所在平面内的一点,连接PA,PB,且PBPA.

①如图2,点P在△ABC内,∠ABP30°,求∠PAB的大小;

②如图3,点P在△ABC外,连接PC,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.

图1图2图3

 

【2018昌平期末】已知,△ABC中,∠ACB=90°,AC=BC,点D为BC边上的一点.

(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;

(2)延长AD交BE于点F,求证:

AF⊥BE;

(3)若AC=,BF=1,连接CF,则CF的长度为.

 

【2018丰台期末】如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC。

(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:

AE=AF;

(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.

 

 

【2018门头沟期末】如图27-1有两条长度相等的相交线段AB、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1