数学建模细菌繁殖问题.docx

上传人:b****5 文档编号:7704945 上传时间:2023-01-25 格式:DOCX 页数:14 大小:91.93KB
下载 相关 举报
数学建模细菌繁殖问题.docx_第1页
第1页 / 共14页
数学建模细菌繁殖问题.docx_第2页
第2页 / 共14页
数学建模细菌繁殖问题.docx_第3页
第3页 / 共14页
数学建模细菌繁殖问题.docx_第4页
第4页 / 共14页
数学建模细菌繁殖问题.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

数学建模细菌繁殖问题.docx

《数学建模细菌繁殖问题.docx》由会员分享,可在线阅读,更多相关《数学建模细菌繁殖问题.docx(14页珍藏版)》请在冰豆网上搜索。

数学建模细菌繁殖问题.docx

数学建模细菌繁殖问题

细菌繁殖

摘要

本文针对酵母菌种群繁殖的基本特点,为达到解决所列出的三个问题的目的,建立了符合实际情况的预测模型。

预测模型:

根据题目给出的已知条件,最终建立了符合本题的Logistic模型。

综合考虑了各种因素,利用计算机MATLAB编程分别对问题进行求解,并分别绘制出本题的Logistic数学模型和问题三中所列的二次多项式的曲线,以供对比。

对于问题一得出,本文建立了种群预测的Malthus模型以及符合本题的Logistic模型,模型中参数K的值为:

0.00081411,参数M的值为:

663.97。

对于问题二得出,自初始时刻起,20小时时酵母菌的数量为:

663.06。

该种群的增长呈现出S型,前期呈指数型增长,中后期增长缓慢,种群数量最终达到最大值:

663.97。

对于问题三得出,根据计算机MATLAB程序绘制出的本题Logistic数学模型以及问题三中所列的二次多项式的曲线。

对两条曲线进行对比,易知符合本题的Logistic模型具有更好的预测能力。

关键词:

Malthus模型;Logistic模型;MATLAB;预测

1问题重述

已知酵母菌种群在培养物中的增长情况,见附录中表a所示。

现根据已有的数据来预测酵母菌的数量,要求尽量与实际相符。

根据以上题目所给的条件及数据,回答以下问题:

问题一:

建立酵母菌数量的数学模型,确定模型中的未知参数;

问题二:

利用问题一中的模型,预测20小时时酵母菌的数量;

问题三:

若用二次多项式

(其中

为常数)作为新模型,试从误差角度说明新模型与问题一中的模型哪个具有更好的预测能力,并画出对比曲线。

2问题的基本假设与说明

1)假设题目所给的数据全部真实可靠,可以作为检验所建立的数学模型的准确性的事实依据。

2)在自然环境中,细菌繁殖增长会受到各方面复杂因素的影响,为简化模型,本文以题目中给出的实测数据,作为衡量所建立的数学模型准确度的主要因素。

3)本文中该酵母菌种群的繁殖方式不随时间变化。

3符号说明

符号

表示意义

t

时刻(单位为小时)

N(t)

t时刻时酵母菌的数量

M

酵母菌数量的最大值

K、k

常系数

N0

酵母菌的初始数量:

9.6

4问题的分析

自然界中某酵母菌种群数量的变化和随着时间的发展过程,是由很多因素决定的,自然环境、资源制约、种群的繁衍能力、种群的存活能力等,都能严重的影响种群的繁衍过程。

然而,自然环境、资源制约却是决定该种群数量变化的直接原因。

综合考虑这些因素成为构建符合本题中酵母菌种群繁殖预测模型的关键。

建立模型对该酵母菌种群发展过程进行定量预测,就是根据现有的统计资料和初始数据,从当前实际出发,并对未来的种群发展过程,提出合理的控制要求和假设说明,应用科学的方法,预测该种群数量的发展趋势。

为此,本文建立了具有预测性的Malthus模型,在综合考虑各影响因素后,建立了符合本题的Logistic模型。

Logistic模型相比Malthus模型以及题中所述的二次多项式模型,更符合题目要求,用题中所给的实测数据检验后发现在误差允许范围内,是十分准确的;从误差的角度分析,Logistic模型具有更好的预测能力。

5模型的建立与求解

5.1数据预处理

由于题中所给数据的不完备性,并不能由它来预测未来种群的发展情况,但是基于抽样调查的等概率性,可以认为它反应的种群增长情况是符合实际情况的,因此认为,根据题中数据,结合所建立的合理的数学模型,准确地对该酵母菌种群的繁殖增长数量作出合理预测。

题中所给数据见附录中表a。

建模初始,本文将题中所给数据分为两部分考虑,其中前八组数据为第一部分,其余数据为第二部分。

5.2模型一:

种群预测的Malthus模型

5.2.1模型的建立

在任意时刻t,细菌的繁殖速度显然可以用表达式

来表示,设

时刻细菌数量为

我们将时间间隔[0,t]分成n等份。

由于细菌的繁殖是连续变化的,在很短的一段时间内细菌数量的变化是很小的,繁殖速度可近似看成是不变的。

因此,在第一段时间

内,细菌数量满足关系式

时段内细菌的增量为

时刻细菌数量为

同理,第二时段

末细菌的数量为

依次类推,可以得到,最后一时段

末细菌的数量为

(1)

由于这是一个近似值。

因为我们假设了在每一小段时间

)内细菌的繁殖速度是不变的,且等于该时段初始时刻的变化速度。

但这种近似程度将随着小区间的长度的缩小精度越高。

若对时间间隔无限细分,就可以得到精确值。

所以,经过时间

后细菌总数为

(2)

即种群预测的Malthus模型为:

5.2.2模型的求解

本文结合题中所给实测数据的第一部分,运用计算机MATLAB程序对

(2)式进行求解,程序见附录中程序一,得到:

k=0.4580

即:

,将其拟合的数据与题中酵母菌实测数据进行比对,见图一:

图一酵母菌部分实测数据与Malthus数学模型曲线

为验证

(2)式的准确性,结合题中所给的全部实测数据,运用计算机MATLAB程序对

(2)式进行求解,程序见附录中程序二,得到:

k=0.25781

即:

,将其拟合的数据与题中酵母菌实测数据进行比对,见图二:

图二酵母菌实测数据与Malthus数学模型曲线

根据图二可以看出,在种群繁殖增长前期,Malthus数学模型可以较为准确的表示出其增长规律;在种群增长中后期却有很大偏差。

本文结合Malthus数学模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表1

表1各个时刻种群数量的误差表

时间t/小时

0

1

2

3

4

5

6

误差

0

-5.8767

-12.923

-26.395

-44.177

-84.759

-129.51

时间t/小时

7

8

9

10

11

12

13

误差

-198.95

-275.19

-343.29

-386.85

-396.06

-383.04

-355.36

时间t/小时

14

15

16

17

18

误差

-286.16

-192.17

-62.002

108.96

332.79

其误差偏大,不利于中长期预测。

算得其误差平方和为:

1.0848

,算得第20小时时,酵母菌的数量为:

1665.6,是不符合实际情况的。

又由图二可知,Malthus数学模型预测该种群呈现出无限增长的趋势,显然不符合实际。

因此可以说明,Malthus数学模型不能准确的表示出该种群的发展趋势,不具备预测该种群增长数量的能力。

为此,本文对该模型进行了改进与优化,充分考虑影响该种群繁殖增长的各种符合实际情况的因素后,建立了能准确表示出该种群的发展趋势,具备更好的预测能力的Logistic模型。

5.3模型二:

符合本题的Logistic模型

5.3.1模型的建立

结合Malthus数学模型的推导,本文建立了符合本题的Logistic模型,其数学表达式为

(3)

该式中K为常系数,M为酵母菌数量的最大值,N(t)为任意时刻t时酵母菌的数量。

整理该式得到N(t)的表达式为

N(t)=

(4)

时,N(t)的表达式为

N(t)=

即符合本题的Logistic模型为:

N(t)=

5.3.2模型的求解

结合题中所给实测数据,运用计算机MATLAB程序对(4)式进行求解,程序见附录中程序三,得到

K=0.00081411,M=663.97

即:

N(t)=

,将其拟合的数据与题中酵母菌实测数据进行比对,见图三:

图三酵母菌实测增长数据与Logistic数学模型曲线

由图三可以看出,在种群繁殖增长的整个过程中,Logistic数学模型可以准确的表示出其增长规律,题中所给的实测数据与Logistic数学模型拟合数据,在误差允许的范围内,几乎一致。

本文结合Logistic数学模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表2

表2各个时刻种群数量的误差表

时间t/小时

0

1

2

3

4

5

6

误差

0

-1.9864

-1.4754

-1.3057

3.9774

-0.36241

6.7726

时间t/小时

7

8

9

10

11

12

13

误差

3.1079

-1.7208

-5.8102

-4.971

3.7856

6.6986

-3.3014

时间t/小时

14

15

16

17

18

误差

0.57621

-0.47708

0.23238

-0.21553

-0.50652

在误差允许范围内,预测的数据是合理的。

算得其误差平方和为:

211.75,算得第20小时时,酵母菌的数量为:

663.06,又由图像知,Logistic数学模型预测该种群呈现出前期、中期增长较快,呈现出J型曲线,在后期随着种群数量不断接近其最大值M=663.97种群增长缓慢,种群结构趋于稳定,其数量变化很小,显然是符合实际的。

因此可以说明,Logistic数学模型能准确的表示出该种群的发展趋势,具备预测该种群增长数量的能力。

5.4二次多项式

模型

根据题目所述,结合题中所给的实测数据,本文利用计算机MATLAB程序,运行程序见附录中程序四,计算得出该模型的参数值为

k0=

,k1=65.706,k2=

则该二次多项式

可化为

整理得

(5)

为达到在误差角度下,比较Logistic数学模型与该模型的预测能力的目的。

本文利用计算机MATLAB程序,将题中的实测数据、Logistic数学模型以及二次多项式模型,绘制成如下图四的曲线:

图四酵母菌实测数据、Logistic模型以及二次多项式的对比曲线

由图四可以看出,题中所给的实测数据均匀的分布在Logistic模型的曲线上,相比之下,该二次多项式曲线误差较大,与实际情况不符。

本文结合该二次多项式模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表3

表3各个时刻种群数量的误差表

时间t/小时

0

1

2

3

4

5

6

误差

-103.38

-47.502

4.1334

46.023

79.965

87.062

85.411

时间t/小时

7

8

9

10

11

12

13

误差

53.815

9.2714

-34.418

-62.355

-66.637

-61.867

-58.842

时间t/小时

14

15

16

17

18

误差

-34.864

-12.033

14.052

38.99

54.43

其误差偏大,预测的数据准确度偏低。

算得其误差平方和为:

59212。

显然,Logistic数学模型的误差更小,具有更好的预测能力。

6模型的优缺点分析

Malthus数学模型在短期预测中具有准确度高,操作简便,容易实现等优势,但是不能准确的预测出该种群长期的发展趋势,不具备预测该种群长期增长数量的能力。

为此,本文对该模型进行了改进与优化,充分考虑影响该种群繁殖增长的各种符合实际情况的因素后,建立了能准确表示出该种群的发展趋势,具备更好的预测能力的Logistic模型。

在种群繁殖增长的整个过程中,Logistic数学模型可以准确的表示出其增长规律,题中所给的实测数据与Logistic数学模型拟合数据,在误差允许的范围内,几乎一致。

相比较二次多项式,Logistic数学模型误差小,预测更准确。

但Logistic数学模型操作繁杂,更适用于中长期预测;在短期种群增长预测中通常选用Malthus数学模型。

7模型的改进及其推广

Logistic数学模型在中长期种群繁殖增长预测中,具有误差小、准确度高的优势,可将其用于卫生防疫部门监测细菌的繁殖状况,提出预警机制。

在疾病防治等公共医疗卫生中,Logistic数学模型可以很好的观察流行疾病的发展态势,为更好的预防疾病防治,提供可靠保证和理论事实依据。

8参考文献

[1]陈恩水,王峰,朱道元.数学建模与实验.北京:

科学出版社,2008

[2]熊启才,张东升.数学模型方法及应用.重庆:

重庆大学出版社,2005

[3]秦新强,赵凤群.线性代数学习指导.北京:

机械工业出版社,2006

[4]刘卫国.MATLAB程序设计与应用.北京:

高等教育出版社,2006

[5]邬学军,周凯.数学建模竞赛铺导教程.杭州:

浙江大学出版社,2009

附录:

表a酵母菌在培养物中的增长

时间t(小时)

0

1

2

3

4

数量N(t)

9.6

18.3

29

47.2

71.1

时间t(小时)

5

6

7

8

9

数量N(t)

119.6

174.6

257.3

350.7

441

时间t(小时)

10

11

12

13

14

数量N(t)

513.3

559.7

594.8

629.4

640.8

时间t(小时)

15

16

17

18

数量N(t)

651.1

655.9

659.6

661.8

程序一:

种群预测的Malthus模型(部分数据)

functionf=curvefun3(c,t)

f=9.6*exp(c*t);

clc

t=[012345678

];

n=[9.618.32947.271.1119.6174.6257.3350.7

];

c0=[1];

[c,options,funval,Jacob]=lsqcurvefit('curvefun3',c0,t,n)

m=curvefun3(c,t)

plot(t,n,'o',t,m,'*')

xlabel('时间t/小时');

ylabel('数量n');

legend('已知酵母菌的观测数据','Malthus拟合的数据')

程序二:

种群预测的Malthus模型(全部数据)

functionf=curvefun3(c,t)

f=9.6*exp(c*t);

k=

0.25781

functionf=curvefun3(c,t)

f=9.6*exp(c*t);

clc

t=[0123456789101112131415161718

];

n=[9.618.32947.271.1119.6174.6257.3350.7441513.3559.7594.8629.4640.8651.1655.9659.6661.8

];

c0=[1];

[x,options,funval,Jacob]=lsqcurvefit('curvefun3',c0,t,n

options=

1.0848e+006

Jacob=

3

clc

t=[0123456789101112131415161718

];

n=[9.618.32947.271.1119.6174.6257.3350.7441513.3559.7594.8629.4640.8651.1655.9659.6661.8

];

m=9.6*exp(0.25781.*t);

plot(t,n,'o',t,m,'*')

xlabel('时间t/小时');

ylabel('数量n');

legend('已知酵母菌的观测数据','Malthus拟合的数据');

 

程序三:

符合本题的Logistic模型

functionf=curvefun4(c,t)

f=-9.6.*c

(1)./(-9.6-exp(-c

(1).*c

(2).*t)*c

(1)+exp(-c

(1).*c

(2).*t).*9.;

clc

t=[0123456789101112131415161718];

n=[9.618.32947.271.1119.6174.6257.3350.7441513.3559.7594.8629.4640.8651.1655.9659.6661.8];

c0=[7000.001];

[x,options,funval,Jacob]=lsqcurvefit('curvefun4',c0,t,n)

f=curvefun4(c,t)

plot(t,n,'o',t,f,'*')

xlabel('时间t/小时');

ylabel('数量n');

legend('已知酵母菌的观测数据','Logistic模型拟合的数据');

运行结果

x=

663.970.00081411

options=

211.75

Jacob=

3

程序四:

酵母菌实测数据及Logistic模型和题目中二次多项式对比曲线

t=[0123456789101112131415161718

];

n=[9.618.32947.271.1119.6174.6257.3350.7441513.3559.7594.8629.4640.8651.1655.9659.6661.8

];

a=polyfit(t,n,2)

z=polyval(a,t);

plot(t,n,'o',t,z,'*')

xlabel('时间t/小时');

ylabel('数量n');

legend('已知酵母菌的观测数据','二次拟合的数据');

fori=1:

18

y(i)=z(1,i)-n(1,i);

k(i)=y(i)*y(i);

end

y

k=sum(k)

a=

-1.123265.706-93.785

k=

59212

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1