ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:91.93KB ,
资源ID:7704945      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7704945.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学建模细菌繁殖问题.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数学建模细菌繁殖问题.docx

1、数学建模 细菌繁殖问题细菌繁殖摘要本文针对酵母菌种群繁殖的基本特点,为达到解决所列出的三个问题的目的,建立了符合实际情况的预测模型。预测模型:根据题目给出的已知条件,最终建立了符合本题的Logistic模型。综合考虑了各种因素,利用计算机MATLAB编程分别对问题进行求解,并分别绘制出本题的Logistic数学模型和问题三中所列的二次多项式的曲线,以供对比。对于问题一得出,本文建立了种群预测的Malthus模型以及符合本题的Logistic模型,模型中参数K的值为:0.00081411,参数M的值为:663.97。对于问题二得出,自初始时刻起,20小时时酵母菌的数量为:663.06。该种群的增

2、长呈现出S型,前期呈指数型增长,中后期增长缓慢,种群数量最终达到最大值:663.97。对于问题三得出,根据计算机MATLAB程序绘制出的本题Logistic数学模型以及问题三中所列的二次多项式的曲线。对两条曲线进行对比,易知符合本题的Logistic模型具有更好的预测能力。关键词:Malthus模型;Logistic模型;MATLAB;预测1 问题重述已知酵母菌种群在培养物中的增长情况,见附录中表a所示。现根据已有的数据来预测酵母菌的数量,要求尽量与实际相符。根据以上题目所给的条件及数据,回答以下问题:问题一:建立酵母菌数量的数学模型,确定模型中的未知参数;问题二:利用问题一中的模型,预测20

3、小时时酵母菌的数量;问题三:若用二次多项式(其中为常数)作为新模型,试从误差角度说明新模型与问题一中的模型哪个具有更好的预测能力,并画出对比曲线。2 问题的基本假设与说明1)假设题目所给的数据全部真实可靠,可以作为检验所建立的数学模型的准确性的事实依据。2)在自然环境中,细菌繁殖增长会受到各方面复杂因素的影响,为简化模型,本文以题目中给出的实测数据,作为衡量所建立的数学模型准确度的主要因素。3)本文中该酵母菌种群的繁殖方式不随时间变化。3 符号说明符号表示意义t时刻(单位为小时)N(t)t时刻时酵母菌的数量M酵母菌数量的最大值K、k常系数N0酵母菌的初始数量:9.64 问题的分析自然界中某酵母

4、菌种群数量的变化和随着时间的发展过程,是由很多因素决定的,自然环境、资源制约、种群的繁衍能力、种群的存活能力等,都能严重的影响种群的繁衍过程。然而,自然环境、资源制约却是决定该种群数量变化的直接原因。综合考虑这些因素成为构建符合本题中酵母菌种群繁殖预测模型的关键。建立模型对该酵母菌种群发展过程进行定量预测,就是根据现有的统计资料和初始数据,从当前实际出发,并对未来的种群发展过程,提出合理的控制要求和假设说明,应用科学的方法,预测该种群数量的发展趋势。为此,本文建立了具有预测性的Malthus模型,在综合考虑各影响因素后,建立了符合本题的Logistic模型。Logistic模型相比Malthu

5、s模型以及题中所述的二次多项式模型,更符合题目要求,用题中所给的实测数据检验后发现在误差允许范围内,是十分准确的;从误差的角度分析,Logistic模型具有更好的预测能力。5 模型的建立与求解5.1 数据预处理由于题中所给数据的不完备性,并不能由它来预测未来种群的发展情况,但是基于抽样调查的等概率性,可以认为它反应的种群增长情况是符合实际情况的,因此认为,根据题中数据,结合所建立的合理的数学模型,准确地对该酵母菌种群的繁殖增长数量作出合理预测。题中所给数据见附录中表a。建模初始,本文将题中所给数据分为两部分考虑,其中前八组数据为第一部分,其余数据为第二部分。5.2 模型一:种群预测的Malth

6、us模型5.2.1 模型的建立在任意时刻t,细菌的繁殖速度显然可以用表达式来表示,设时刻细菌数量为。我们将时间间隔0, t分成n 等份。由于细菌的繁殖是连续变化的,在很短的一段时间内细菌数量的变化是很小的,繁殖速度可近似看成是不变的。因此,在第一段时间内,细菌数量满足关系式 时段内细菌的增量为 故时刻细菌数量为 同理,第二时段末细菌的数量为 依次类推,可以得到,最后一时段末细菌的数量为 (1)由于这是一个近似值。因为我们假设了在每一小段时间()内细菌的繁殖速度是不变的,且等于该时段初始时刻的变化速度。但这种近似程度将随着小区间的长度的缩小精度越高。若对时间间隔无限细分,就可以得到精确值。所以,

7、经过时间后细菌总数为 (2)即种群预测的Malthus模型为:。5.2.2 模型的求解本文结合题中所给实测数据的第一部分,运用计算机MATLAB程序对(2)式进行求解,程序见附录中程序一,得到:k=0.4580即:,将其拟合的数据与题中酵母菌实测数据进行比对,见图一:图一 酵母菌部分实测数据与Malthus数学模型曲线为验证(2)式的准确性,结合题中所给的全部实测数据,运用计算机MATLAB程序对(2)式进行求解,程序见附录中程序二,得到:k=0.25781即:,将其拟合的数据与题中酵母菌实测数据进行比对,见图二:图二 酵母菌实测数据与Malthus数学模型曲线根据图二可以看出,在种群繁殖增长

8、前期,Malthus数学模型可以较为准确的表示出其增长规律;在种群增长中后期却有很大偏差。本文结合Malthus数学模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表1表1 各个时刻种群数量的误差表时间t/小时0123456误差0-5.8767-12.923-26.395-44.177-84.759-129.51时间t/小时78910111213误差-198.95-275.19-343.29-386.85-396.06-383.04-355.36时间t/小时1415161718误差-286.16-192.17-62.002108.96332.79其误差偏大,不利于中长期预测。

9、算得其误差平方和为:1.0848,算得第20小时时,酵母菌的数量为:1665.6,是不符合实际情况的。又由图二可知,Malthus数学模型预测该种群呈现出无限增长的趋势,显然不符合实际。因此可以说明,Malthus数学模型不能准确的表示出该种群的发展趋势,不具备预测该种群增长数量的能力。为此,本文对该模型进行了改进与优化,充分考虑影响该种群繁殖增长的各种符合实际情况的因素后,建立了能准确表示出该种群的发展趋势,具备更好的预测能力的Logistic模型。5.3 模型二:符合本题的Logistic模型5.3.1 模型的建立结合Malthus数学模型的推导,本文建立了符合本题的Logistic模型,

10、其数学表达式为 (3)该式中K为常系数,M为酵母菌数量的最大值,N(t)为任意时刻t时酵母菌的数量。整理该式得到N(t)的表达式为 N(t)= (4)当时,N(t)的表达式为N(t)= 即符合本题的Logistic模型为:N(t)= 5.3.2 模型的求解结合题中所给实测数据,运用计算机MATLAB程序对(4)式进行求解,程序见附录中程序三,得到K=0.00081411,M=663.97即:N(t)=,将其拟合的数据与题中酵母菌实测数据进行比对,见图三:图三 酵母菌实测增长数据与Logistic数学模型曲线由图三可以看出,在种群繁殖增长的整个过程中,Logistic数学模型可以准确的表示出其增

11、长规律,题中所给的实测数据与Logistic数学模型拟合数据,在误差允许的范围内,几乎一致。本文结合Logistic数学模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表2表2 各个时刻种群数量的误差表时间t/小时0123456误差0-1.9864-1.4754-1.30573.9774-0.362416.7726时间t/小时78910111213误差3.1079-1.7208-5.8102-4.9713.78566.6986-3.3014时间t/小时1415161718误差0.57621-0.477080.23238-0.21553-0.50652在误差允许范围内,预测的数

12、据是合理的。算得其误差平方和为:211.75,算得第20小时时,酵母菌的数量为:663.06,又由图像知,Logistic数学模型预测该种群呈现出前期、中期增长较快,呈现出J型曲线,在后期随着种群数量不断接近其最大值M=663.97种群增长缓慢,种群结构趋于稳定,其数量变化很小,显然是符合实际的。因此可以说明,Logistic数学模型能准确的表示出该种群的发展趋势,具备预测该种群增长数量的能力。5.4 二次多项式模型根据题目所述,结合题中所给的实测数据,本文利用计算机MATLAB程序,运行程序见附录中程序四,计算得出该模型的参数值为k0=,k1=65.706,k2=则该二次多项式可化为整理得

13、(5)为达到在误差角度下,比较Logistic数学模型与该模型的预测能力的目的。本文利用计算机MATLAB程序,将题中的实测数据、Logistic数学模型以及二次多项式模型,绘制成如下图四的曲线:图四 酵母菌实测数据、Logistic模型以及二次多项式的对比曲线由图四可以看出,题中所给的实测数据均匀的分布在Logistic模型的曲线上,相比之下,该二次多项式曲线误差较大,与实际情况不符。本文结合该二次多项式模型拟合的数据与题中酵母菌实测数据对比,得各个时刻种群数量的误差见表3表3 各个时刻种群数量的误差表时间t/小时0123456误差-103.38-47.5024.133446.02379.9

14、6587.06285.411时间t/小时78910111213误差53.8159.2714-34.418-62.355-66.637-61.867-58.842时间t/小时1415161718误差-34.864-12.03314.05238.9954.43其误差偏大,预测的数据准确度偏低。算得其误差平方和为:59212。显然,Logistic数学模型的误差更小,具有更好的预测能力。6 模型的优缺点分析Malthus数学模型在短期预测中具有准确度高,操作简便,容易实现等优势,但是不能准确的预测出该种群长期的发展趋势,不具备预测该种群长期增长数量的能力。为此,本文对该模型进行了改进与优化,充分考虑

15、影响该种群繁殖增长的各种符合实际情况的因素后,建立了能准确表示出该种群的发展趋势,具备更好的预测能力的Logistic模型。在种群繁殖增长的整个过程中,Logistic数学模型可以准确的表示出其增长规律,题中所给的实测数据与Logistic数学模型拟合数据,在误差允许的范围内,几乎一致。相比较二次多项式,Logistic数学模型误差小,预测更准确。但Logistic数学模型操作繁杂,更适用于中长期预测;在短期种群增长预测中通常选用Malthus数学模型。7 模型的改进及其推广Logistic数学模型在中长期种群繁殖增长预测中,具有误差小、准确度高的优势,可将其用于卫生防疫部门监测细菌的繁殖状况

16、,提出预警机制。在疾病防治等公共医疗卫生中,Logistic数学模型可以很好的观察流行疾病的发展态势,为更好的预防疾病防治,提供可靠保证和理论事实依据。8 参考文献1 陈恩水,王峰,朱道元.数学建模与实验.北京:科学出版社,20082 熊启才,张东升.数学模型方法及应用.重庆:重庆大学出版社,20053 秦新强,赵凤群.线性代数学习指导.北京:机械工业出版社,20064 刘卫国.MATLAB程序设计与应用.北京:高等教育出版社,20065 邬学军,周凯.数学建模竞赛铺导教程.杭州:浙江大学出版社,2009附录:表a 酵母菌在培养物中的增长时间t(小时)01234数量N(t)9.618.3294

17、7.271.1时间t(小时)56789数量N(t)119.6174.6257.3350.7441时间t(小时)1011121314数量N(t)513.3559.7594.8629.4640.8时间t(小时)15161718数量N(t)651.1655.9659.6661.8程序一:种群预测的Malthus模型(部分数据)function f=curvefun3(c,t)f=9.6*exp(c*t);clct=0 1 2 3 4 5 6 7 8 ;n=9.6 18.3 29 47.2 71.1 119.6 174.6 257.3 350.7 ;c0=1;c, options,funval, Ja

18、cob =lsqcurvefit(curvefun3,c0,t,n) m= curvefun3(c,t)plot(t,n,o,t,m,*)xlabel(时间t/小时);ylabel(数量n);legend(已知酵母菌的观测数据,Malthus拟合的数据)程序二:种群预测的Malthus模型(全部数据)function f=curvefun3(c,t)f=9.6*exp(c*t);k= 0.25781function f=curvefun3(c,t)f=9.6*exp(c*t);clct=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18;n=9.6 1

19、8.3 29 47.2 71.1 119.6 174.6 257.3 350.7 441 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8;c0=1;x, options,funval, Jacob =lsqcurvefit(curvefun3,c0,t,noptions = 1.0848e+006Jacob = 3clct=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ;n=9.6 18.3 29 47.2 71.1 119.6 174.6 257.3 350.7 441 513.3 5

20、59.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8;m=9.6*exp(0.25781.*t);plot(t,n,o,t,m,*)xlabel(时间t/小时);ylabel(数量n);legend(已知酵母菌的观测数据,Malthus拟合的数据);程序三:符合本题的Logistic模型function f=curvefun4(c,t)f=-9.6.*c(1)./(-9.6-exp(-c(1).*c(2).*t)*c(1)+exp(-c(1).*c(2).*t).*9.;clct=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21、 16 17 18;n=9.6 18.3 29 47.2 71.1 119.6 174.6 257.3 350.7 441 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8;c0=700 0.001; x, options,funval, Jacob =lsqcurvefit (curvefun4,c0,t,n) f= curvefun4(c,t) plot(t,n,o,t,f,*)xlabel(时间t/小时);ylabel(数量n);legend(已知酵母菌的观测数据,Logistic模型拟合的数据);运行结果x = 663.97 0

22、.00081411options = 211.75Jacob = 3程序四:酵母菌实测数据及Logistic模型和题目中二次多项式对比曲线t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18;n=9.6 18.3 29 47.2 71.1 119.6 174.6 257.3 350.7 441 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8;a=polyfit(t,n,2)z=polyval(a,t);plot(t,n,o,t,z,*)xlabel(时间t/小时);ylabel(数量n);legend(已知酵母菌的观测数据,二次拟合的数据);for i=1:18 y(i)=z(1,i)-n(1,i); k(i)=y(i)*y(i);endyk=sum(k)a = -1.1232 65.706 -93.785k = 59212

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1