cnigdtd我国复杂难选铁矿的选矿技术进展.docx

上传人:b****5 文档编号:5608667 上传时间:2022-12-29 格式:DOCX 页数:14 大小:33.95KB
下载 相关 举报
cnigdtd我国复杂难选铁矿的选矿技术进展.docx_第1页
第1页 / 共14页
cnigdtd我国复杂难选铁矿的选矿技术进展.docx_第2页
第2页 / 共14页
cnigdtd我国复杂难选铁矿的选矿技术进展.docx_第3页
第3页 / 共14页
cnigdtd我国复杂难选铁矿的选矿技术进展.docx_第4页
第4页 / 共14页
cnigdtd我国复杂难选铁矿的选矿技术进展.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

cnigdtd我国复杂难选铁矿的选矿技术进展.docx

《cnigdtd我国复杂难选铁矿的选矿技术进展.docx》由会员分享,可在线阅读,更多相关《cnigdtd我国复杂难选铁矿的选矿技术进展.docx(14页珍藏版)》请在冰豆网上搜索。

cnigdtd我国复杂难选铁矿的选矿技术进展.docx

cnigdtd我国复杂难选铁矿的选矿技术进展

.~

1我们‖打〈败〉了敌人。

  ②我们‖〔把敌人〕打〈败〉了。

我国复杂难选铁矿的选矿技术进展

From:

中国矿山机械信息网

          钢铁工业持续稳定的发展迫切需要稳定、足量、优质的铁矿原料供给。

进入21世纪,随着世界经济的复苏和结构调整的加快,特别是我国经济的快速发展,拉动了我国钢铁工业持续高增长,我国钢铁总产量已经居世界第一,2003年的钢产量达到了2.2亿t,2004年的钢产量超过了2.7亿t。

随着我国钢铁工业规模的不断扩大,我国已经超过日本成为世界最大的铁矿石进口国,2003年进口铁矿石1.5亿t,2004年进口铁矿石达2.08亿t,2005年进口铁矿石达2.75亿t。

进口铁矿石的数量已占我国成品铁矿石需求总量的一半以上。

由于铁矿石供求缺口的增大,导致国内外铁矿石价格暴涨,海运费大幅攀升,运输系统处于极度紧张状态。

对于铁矿石进口依存度的提高,已成为我国钢铁工业经济安全的重大隐患。

因此,迫切需要依靠技术进步来最大限度地利用国内现有铁矿资源,尤其是受目前选矿技术限制而不能利用的复杂难选铁矿石以及目前虽能利用但质量和利用率较低的铁矿石,增储增效,充分挖掘现有铁矿山的生产潜力,提高铁矿石的自给率,缓解进口矿的压力,维持稳定、足量、优质的铁矿原料供给,以保障钢铁工业持续稳定的发展。

 

      1 铁矿石资源及复杂难选铁矿石开发利用状况

        我国铁矿石的主要特点是“贫”、“细”、“杂”,平均铁品位百分之32,比世界平均品位低11个百分点。

其中百分之97的铁矿石需要选矿处理,并且复杂难选的红铁矿占的比例大(约占铁矿石储量的百分之20.8)。

铁矿床成因类型多样,矿石类型复杂。

探明的铁矿资源量380—410亿t。

       主要铁矿类型有

     ①鞍山式沉积变质型铁矿,以磁铁矿石为主,品位为百分之30—百分之35,资源量为200亿t。

其中鞍本地区120亿t,冀东地区50亿t,山西、北京、冀西、安徽等省市区约30亿t;

    ②攀枝花式岩浆分异则铁矿,以磁铁矿、钛铁矿为主,品位百分之30~百分之35,主要分布在四川省西昌到渡口一带,资源量为70亿t;  

    ③大冶式和邯邢式接触交代型铁矿,以磁铁矿石为主,品位百分之35—百分之60,主要分布在邯邢、莱芜和长江中下游一带,资源量为50亿t,铁含量大于百分之45的富矿较多;

    ④梅山式玢岩型铁矿,以磁铁矿石为主,资源量10亿t,品位百分之35—百分之60;

    ⑤宣龙式和宁乡式沉积型铁矿,以赤铁矿石为主,品位低,含磷高,难处理,主要分布在河北宣化和湖北鄂西一带,资源量30—50亿t;   

   ⑥大红山式和蒙库式海相火山沉积变质型铁矿,以磁铁矿矿石为主,品位百分之35—百分之60,主要分布在云南、新疆一带,资源量为20亿t。

在铁矿中的共生和伴生铁矿多,约占资源量百分之17.9,典型矿床有攀枝花铁矿、白云鄂博铁矿、大冶铁矿等,共(伴)生组分有钒、钛、稀土、铜等。

 

   目前我国菱铁矿石和褐铁矿石资源的利用率极低,大部分没有回收利用或根本没有开采利用;我国最大量入选的矿石为鞍山式沉积变质铁矿石,但其中也有部分矿石由于嵌布粒度微细,矿物组成复杂尚未得到有效的开发利用,如本钢贾家堡子铁矿,属贫磁铁矿石,储量约1.5亿t,由于矿石嵌布粒度微细,结构较为复杂,目前尚未开发利用:

山西太古岚矿区的袁家村铁矿,截止1990年底,全区累计探明及保有储量为89 450万t,矿石类型分石英型和闪石型,有氧化矿和原生矿。

矿石嵌布粒度微细,磁铁、赤铁矿石粒度百分之75—百分之80小于0.043 mm,其中石英型铁矿石有百分之20-0.010 mm,闪石型铁矿石有百分之40-0.010mm。

原矿铁品位又较低,实属复杂难选的铁矿石。

昆钢大红山铁矿,属磁铁矿—赤铁矿混合矿石,储量约为4.6亿t,其中有近2.0亿t,赤铁矿,由于矿石嵌布粒度微细,脉石矿物组成较复杂,选矿指标较低,也属复杂难选的铁矿石。

宣龙式和宁乡式铁矿,约占我国铁矿总储量的百分之12,占我国红铁矿储量的百分之30,由于矿石嵌布粒度微细,矿石结构为鲕状,含有害杂质磷高,目前尚未开发利用。

包头白云鄂博铁矿为大型多金属共生复合铁矿,除铁外,尚有稀土、铌等多种金属,已发现有71种元素,170多种矿物,矿石类型多,其中稀土储量居世界首位。

对这种矿石的选矿研究从20世纪60年代开始,国内外多家科研院所与包钢合作进行了大量的试验研究工作,到目前采用弱磁—强磁—浮选回收铁和稀土的选矿工艺流程,这一工艺流程体现了“以铁为主,综合回收稀土矿物”的指导思想,使包钢的白云鄂博铁矿的选矿技术获得了重大的突破。

技术是在不断地进步,目前从技术角度看,这种工艺获得的铁精矿品位低,其主要原因是铁精矿中含有硅酸盐类矿物,尤其是钾钠含量高,严重影响高炉冶炼效果。

稀土矿物回收率低,总回收率不足百分之20,另外其他有价元素更没有得到回收。

       2 我国难选铁矿石选矿技术进展

        2. 1 菱铁矿石选矿技术

         由于菱铁矿的理论铁品位较低,且经常与钙、镁、锰呈类质同象共生,因此采用物理选矿方法铁精矿品位很难达到百分之45以上,但焙烧后因烧损较大而大幅度提高铁精矿品位。

比较经济的选矿方法是重选、强磁选,但难以有效地降低铁精矿中的杂质含量。

强磁选—浮选联合工艺能有效地降低铁精矿中的杂质含量,铁精矿焙烧后仍不失为一种优质炼铁原料。

我们对太钢峨口铁矿尾矿中碳酸铁矿物的回收利用进行了大量的研究工作。

该碳酸铁的赋存状态是以铁镁碳酸盐类质同象系列矿物为主,研究推荐采用筛分—强磁选—浮选联合工艺流程,最终铁精矿品位为百分之35以上(焙烧后铁品位百分之51以上),Si02含量降至百分之4以下,四元碱度达到3以上,既是一种铁原料,又具有炼铁熔剂的性能,与酸性铁精矿混合冶炼能大大改善冶金性能,预算年效益可达数千万元。

中性或还原磁化焙烧—弱磁选是最原始且可靠的菱铁矿选矿技术,虽然加工成本较高,但随着铁矿资源紧缺和价值的升高,该技术的研究与应用逐渐趋于升温。

块状铁矿石(15—75mm)采用竖炉焙烧已具有长期成功的生产实践,而对于粉状铁矿石的焙烧,虽然曾进行过包括沸腾炉、回转窑焙烧等大量的技术研究,但至今尚未有大规模的生产实践。

近几年国内有关科研院所又重新加强对粉状铁矿石焙烧技术的研究,并提出了所谓的“闪烁焙烧技术”,即利用回转窑焙烧技术使粉状铁矿石快速磁化焙烧。

采用该技术对武钢大冶铁矿的强磁精矿、酒钢强磁中矿、陕西大西沟铁矿等富含碳酸铁矿物的铁矿石进行了试验研究,铁精矿品位可提高到百分之55~百分之60以上。

       2.2 褐铁矿石选矿技术

       由于褐铁矿中富含结晶水,因此采用物理选矿方法铁精矿品位很难达到百分之60,但焙烧后因烧损较大而大幅度提高铁精矿品位。

另外由于褐铁矿在破碎磨矿过程中极易泥化,难以获得较高的金属回收率。

褐铁矿选矿工艺有还原磁化焙烧—弱磁选、强磁选、重选、浮选及其联合工艺。

过去具有工业生产实践的选矿工艺有强磁选、强磁选—正浮选,但由于受褐铁矿石性质(极易泥化)、强磁选设备(对-20μm铁矿物回收率较差)及浮选药剂的制约,其选别指标较差,而还原磁化焙烧—弱磁选工艺的选矿成本较高,因此该类铁矿石基本没有得到有效利用。

为了提高细粒铁矿物的回收率,曾进行用褐煤作还原剂和燃料的回转窑焙烧磁选技术的半工业试验、絮凝—强磁选技术工业试验等,均取得较好的试验结果。

我们对江西铁坑褐铁矿石进行了选择性絮凝—强磁选技术工业试验,结果表明铁金属回收率可提高10个百分点以上,但由于絮凝设备及选择性絮凝工艺条件的控制尚未过关而未能工业化。

近两年来,随着新型高梯度强磁选机及新型高效反浮选药剂的研制成功,强磁选—反浮选—焙烧联合工艺分选褐铁矿石取得明显进展,即先通过强磁—反浮选获得低杂质含量的铁精矿,然后通过普通焙烧或者与磁铁精矿混合生产球团矿可大幅度提高产品的铁品位,仍不失为优质炼铁原料。

我们对江西铁坑褐铁矿等铁矿石的试验研究结果表明,反浮选精矿铁品位可达到百分之57、SiO2含量降至百分之5左右,经焙烧后产品的铁品位可达到百分之64以上,与焙烧、磁选、反浮选联合工艺相比,生产成本大幅度下降,使该类型铁矿石具有经济开采利用价值,并且2005年将投入生产。

    2.3 复合铁矿石选矿技术

        我国大多铁矿石中都含有两种以上的铁矿物,种类越多其可选性越差。

该类铁矿石中以共生有赤铁矿、镜铁矿、针铁矿、菱铁矿、褐铁矿等弱磁性铁矿物者较为难选。

常规的选矿工艺均可用于分选该类铁矿石,但当矿石中含菱铁矿或褐铁矿较多时,其铁精矿品位和回收率均难以提高。

为此,近几年开展了大量的相关研究工作,较突出的研究成果是弱磁—强磁—浮选和磁化焙烧—反浮选等联合工艺。

例如,我们对酒钢铁矿石(含镜铁矿、菱铁矿及褐铁矿等)粉矿(-15mm)采用强磁—正浮选工艺的研究结果表明,与现场采用的单一强磁选工艺相比,在铁精矿品位提高2个百分点(达到百分之49以上,烧后达到百分之58以上)的同时,铁金属回收率提高12个百分点以上(达到百分之74以上)。

另外,紧密结合酒钢焙烧精矿性质特点,避免多段磁选方法和剩磁影响,用再磨—反浮选和再磨—弱磁—反浮选流程进行了降低焙烧磁选精矿中的杂质含量的试验。

在入选粒度百分之82-75μm的条件下,取得了SiO2+Al2O的杂质含量由百分之11以上降到了百分之6以下,精矿铁品位由百分之55提高到百分之59以上(烧损后铁品位达百分之60以上),降杂作业回收率达百分之94的良好指标。

      2.4 多金属共生铁矿石选矿技术

       我国难选多金属共生铁矿石主要有包头白云鄂博稀土铁矿和攀枝花钒钛磁铁矿等,该类型铁矿石的特点是矿物组成及共生关系复杂,由此造成铁精矿选别指标低及共伴生有价元素的回收率低。

其中以包头白云鄂博稀土氧化铁矿石尤为难选。

目前包钢选矿厂氧化铁矿行采用弱磁—强磁—反浮选工艺进行选铁,其强磁精矿中主要有易浮类萤石、碳酸盐等矿物和难浮难选的含铁硅酸盐类矿物。

对于易浮类萤石、碳酸盐等矿物包钢选矿厂通过几十年研究和生产实践已经形成了较成熟方法,即以水玻璃为抑制剂、GE-28为捕收剂的弱碱性反浮选生产工艺,而难浮难选的含铁硅酸盐类矿物一直没有得到有效分离,致使铁精矿品位较低(徘徊在百分之55以下),精矿中钾纳含量高。

对于取自于现场,细度为-0.076mm占百分之88左右、铁品位百分之43.5左右的强磁精矿样,采用优化组合的反浮选—正浮选工艺流程,并在正浮选作业采用新型高效捕收剂,全流程浮选闭路试验指标为精矿产率百分之53左右、精矿铁品位百分之62左右、回收率百分之75左右,同时有害元素如P、K2O、Na2O、F降低幅度很大,为改善该类型铁矿石的选别指标开辟了一条有效的新途径。

另外,对于攀枝花钒钛磁铁矿石,分别采用细筛—再磨工艺选铁和高梯度强磁—浮选工艺选钛等,该矿石的各项选别指标均得到显著提高。

      2.5 鲕状赤铁矿石选矿技术

      鲕状赤铁矿嵌布粒度极细且经常与菱铁矿、鲕绿泥石和含磷矿物共生或相互包裹,因此鲕状赤铁矿石是目前国内外公认的最难选的铁矿石类型。

过去曾对该类型铁矿石进行了大量的选矿试验研究工作,其中还原焙烧—弱磁选工艺的选别指标相对较好,但由于其技术难点是需要超细磨,而目前常规的选矿设备及药剂难以有效地回收-10μm的微细粒铁矿物,因此该类型铁矿石资源基本没有得到利用。

随着我国可利用的铁矿资源逐渐减少,研究鲕状赤铁矿石的高效选矿技术已凸显重要性和紧迫性。

相关初步研究结果证明,超细磨—选择性絮凝(聚团)—强磁选或浮选、还原焙烧—超细磨—选择性絮凝(聚团)—弱磁选或浮选等高效选矿工艺或选冶联合工艺已显现其优越性。

      2.6 高硫、磷铁矿石选矿技术

       我国大部分铁矿石含有硫、磷等有害杂质。

特别是对于富含磁黄铁矿、微细粒磷灰石或胶磷矿的铁矿石,其铁精矿除杂的难度极大。

铁精矿除硫常用的工艺有浮选、焙烧,而后者成本高且产生环境污染,因此研究的主攻方向是强化浮选。

我公司研发出以高效活化剂为关键技术的磁铁矿与磁黄铁矿高效分离工艺。

通过对国内外多个磁黄铁矿型高硫磁铁矿选矿降硫研究与应用结果证明,与常规浮选相比,铁精矿含硫量可降低0.5个百分点,重要的是铁精矿含硫量可以满足后续用户的要求。

大量的研究成果证明,铁精矿除磷可采用磁选、反浮选、选择性絮凝(聚团)、酸浸、氯化焙烧—酸浸、生物浸出及其联合工艺等,其中磁选—反浮选、选择性絮凝(聚团)—反浮选联合工艺较经济,氯化焙烧—酸浸工艺除磷效果较好,但成本较高,而生物浸出是将来的发展方向。

    3 结 论

    通过大量的选矿技术研究和攻关,近年我国复杂难选铁矿石选矿技术已取得可喜的进展,但由于受我国铁矿石种类复杂及综合选矿技术经济水平不高的制约,导致我国复杂难选铁矿石资源的利用率极低,甚至个别矿种基本没有得到利用。

因此以后应加强以下几个方面的技术攻关工作:

(1)研究及应用高效的多碎少磨技术与装备;

(2)加强高效焙烧技术与装备研究,重点是细粒(粉状)物料焙烧技术与装备等;

(3)加强高效细粒磨矿分级工艺与装备研究;

(4)加强高效细粒铁矿选矿工艺与装备研究,重点是深化研究选择性絮凝(聚团)—反浮选联合工艺、装备及其自动控制,研究选冶联合工艺及生物浸出工艺,研究高效回收微细粒铁矿物的强磁选机和浮选设备等;

(5)研制适合于铁矿物与含铁硅酸盐类矿物、硫、磷等有害杂质矿物高效分离的浮选药剂以及微细粒铁矿石的高效分散剂、絮凝(聚团)剂、浮选药剂等。

neteagle|2007-12-21[选矿知识]贫铁矿及其洗选工艺介绍

From:

选矿机械设备

   中国现已查明的铁矿矿床约1760多处,分布在全国600多个县内10亿t以上的大型矿区有鞍本、攀西、冀东—北京密怀、五台岚县、宁芜—罗河、鄂西、包头—白云、鲁中和云南惠名等9个,合计占总储量的67.3%。

总储量的51.3%集中在辽宁、四川和河北三省,已开发利用的占总储量的36.3%。

    中国铁矿石资源丰而不富,在约500亿t储量中97.7%为贫矿,平均品位33%,低于世界铁矿石平均品位11个百分点,含铁量大于50%的富矿仅占2.3%,绝大部分须经选别方可入炉。

中国铁矿石资源质量不高,其矿石大都以细粒条带状、鲕状及分散点状结构存在,甚至呈显微细粒结构。

有些是多金属共生复合矿床,一些有价矿物往往需细磨至200目占90%才能单体分离,给选别等作业带来了难度。

在开发过程中消耗大宗能量的同时,也给环境带来了污染。

     贫铁矿资源的特点决定了它的开发利用与其它矿产有所不同,采掘工程量大,产值低,利润少,资金利用率低。

近年来,铁矿石进口量大幅增长,2004年达到2.1亿t,进口铁矿石的金属量已占中国入炉金属量的50%。

同时,铁矿石市场价格见涨,2004年价格上涨18.6%,2005年4月又上涨71.5%,市场竞争的压力越来越大。

     基本工艺

           1磁铁石英岩的选矿

     磁铁石英岩即铁隧岩,或鞍山式贫铁矿石,多集中分布在鞍本、五岚及冀东地区。

矿石中主含磁铁矿和石英,依据磁铁石英岩的磁学性质,一般利用磁铁矿和石英磁化系数的较大差别进行磁选,典型的这一类选矿厂有美国伊里选厂、明塔克选厂、加拿大亚当斯选厂、前苏联的库尔斯克矿石公司、中国的大石河南芬和大孤山等选矿厂。

磁铁石英岩的分选工艺是经三至四段破碎至25~15mm,或经一段破碎到350~250mm,通过自磨与球磨(砾磨)结合,实施三段细磨,进入多段磁选。

磁铁石英岩选矿的工艺特点是采取阶段磨矿和磁选流程,以便阶段排出单体脉石,减少下一阶段的磨矿量。

          2  磁铁矿石的选矿

        磁铁矿石属于矽卡岩型矿石,其中主要铁矿物为磁铁矿,还含有少量的硫化矿物,并伴生有钴镍钒等有色金属,脉石为矽卡岩。

矿石呈斑点状、角砾状、带状和块状。

磁化系数与磁铁石英岩相似。

根据粒度嵌布特性可分为粗粒、细粒、微细粒和极微细粒嵌布矿石。

典型的这一类选矿厂有美国恩派尔选厂、格雷斯选厂、加拿大希尔顿选厂和澳大利亚怒江选厂。

中国的多集中分布在鄂东、邯郸、山东、江苏和安徽等地有五家子铁矿和玉石洼铁矿等。

依据磁铁矿石的物理性质,最有效的选矿方法是以磁选法回收磁性矿物,以浮选法回收伴生的硫化矿物。

其分选工艺多是二至四段破碎,并在破碎流程中配有一至二段干式磁选,选别中碎或细碎产品。

对进一步深选产品,经二至三段细磨,进行二至五次湿式磁选,获得最终铁精矿产品采用磁选——浮选或浮选——磁选等联合流程,在提高铁精矿品位的同时,还可回收伴生矿物成为相应的精矿产品,以及精矿的脱硫。

磁铁矿石磨矿粒度较粗且泥化的粒子含量较少,一般用磁选机即可进行脱泥。

选别磁铁矿石的选矿厂按照全循环供水流程操作,循环水利用率为75%~85%。

      3赤铁矿和赤-磁铁矿石的选矿

        

(1)赤铁矿和赤-磁铁矿石在入选矿石中占有较高的比重。

多分布在中国鞍山、前苏联的库尔斯克磁力异常区、美国的密执安、加拿大的魁北克、巴西考埃和利比亚帮格地区。

以赤铁矿为主的矿石,主要是选别具有良好物理性质的粗粒嵌布矿石,而微细粒嵌布赤铁矿石的利用尚属世界上探索的课题。

中国的赤铁矿石具有细粒和微细粒嵌布的浸染状结构,主要含赤铁矿和石英赤-磁铁矿石中赤铁矿和磁铁矿的比例变化很大,按其比例可分为矽卡岩型(如帮格矿石)和镜铁矿型(如卡罗尔矿石)。

      

(2)赤-磁铁矿石的选矿工艺。

现在多采用磁选——重选流程、磁选——浮选流程或重选——磁选——浮选流程。

有的选厂先用重选方法回收赤铁矿。

再从重选尾矿中用磁选方法回收磁铁矿;也有用浮选法(挪威拉那选厂)和用电选法(加拿大瓦布什选厂)进行精选,或在最后一段选别前用细筛处理。

磁选——重选流程首先用弱磁场磁选回收磁铁矿,而后用重选法从磁选尾矿中回收赤铁矿;而磁选——浮选流程则以浮选作为分选赤铁精矿的主要过程,用重选法回收粗粒赤铁矿和磁铁矿,用磁选法回收细粒磁铁矿。

对于致密结晶的赤-磁铁石英岩,重选法广泛地用于选别粗粒嵌布矿石,强磁选或浮选用于选别细粒矿石。

对于黏土质赤-磁铁矿石,主要用洗矿或干式磁选。

   (3)赤铁矿石的选矿。

可采用洗矿、重选、浮选、磁选和焙烧磁选法,或用浮选和电选作为精选作业,按不同矿石性质,组成不同形式的选矿工艺流程。

对粗粒或块状矿石混入贫化物料时,多用重悬浮液选矿。

有些选矿厂对粒状矿石采用跳汰选矿,对于中细粒矿石用螺旋选矿机进行重选,或用强磁选机进行磁选。

     (4)对于微细粒嵌布的石英铁质岩用浮选法或焙烧磁选法来处理。

美国Tilden选矿厂用选择性絮凝、阳离子反浮选处理细磨到80%-0.025mm的矿石。

鞍山烧结总厂和齐大山选矿厂曾用竖炉,前苏联克里沃中部采选公司选矿厂曾用回转窑对细粒嵌布赤铁矿石进行还原焙烧处理后再磁选获得铁精矿。

 

      -钒钛磁铁矿石的选矿

       钒钛磁铁矿石中的磁铁矿与钛矿物连晶,颗粒粗大。

脉石为辉长岩橄榄岩和绿泥石,颗粒分布不均且难细磨。

矿石可磨性系数约为磁铁石英岩的1/2,属于易选、难磨和矿物纯度低的矿石,伴有工业品位的钛和钒钴镍等有用元素。

钒钛磁铁矿石主要集中在中国攀西地区和前苏联的乌拉尔地区。

攀枝花冶金矿山公司对破碎产品直接进行细磨,采用了一段闭路磨矿和二段磁选一段扫选的工艺流程,选矿厂采用循环水供应系统,对于此类矿石除了回收铁精矿外,同时还回收钛矿物和硫镍矿物产品。

-褐铁矿石的选矿褐铁矿石主要呈鲕状、粉状和致密块状结构,鲕粒大小不一。

除主要矿物为褐铁矿外,还含有少量赤铁矿菱铁矿。

脉石主要为石英、碌泥石、方解石、泥质物和黏土等矿物,还含有锰磷坤等杂质。

 

       褐铁矿的选矿

        目前广泛采用洗矿、重选、磁选联合流程。

      菱铁矿石的选矿矿石中主要金属矿物为菱铁矿及少量的褐铁矿、赤铁矿、磁铁矿和硅酸铁等。

非金属矿物为石英和方解石等。

菱铁矿石在世界上应用不够广泛,仅在欧洲一些铁矿资源较少的国家,如捷克、波兰、前南斯拉夫、奥地利等国进行大规模的工业应用。

菱铁矿石的主要选矿方法是焙烧磁选法和重选法。

主要设备-破碎磨矿设备中国铁矿石破碎作业基本按照五种流程进行生产,一段破碎多是供自磨机磨矿用料,破碎粒度为350~0mm或250~0mm二段破碎、三段开路破碎、三段闭路破碎和四段破碎多是供球磨机或棒磨机磨矿用料,破碎粒度为25~0mm、20~0mm、15~0mm和12~0mm。

  按破碎产品粒度分为粗碎、中碎和细碎三种破碎设备。

粗破碎机采用颚式破碎机或旋回破碎机。

大型铁矿石选厂多用1500mm×2100mm颚式破碎机和1500mm/300mm或1200mm/180mm旋回破碎机。

中破碎机采用标准型圆锥破碎机。

细破碎机采用短头型圆锥破碎机。

磨矿主要采用一段磨矿、二段磨矿和三段磨矿流程。

其中有连续磨矿和阶段磨矿或带有选别或带有细筛的磨矿流程。

歪头山、金山店、石人沟和漓渚等20多个铁矿拥有自磨机70余台,其中较多的是f5.5m×1.8m自磨机,半自磨技术是向自磨机中加入3%~5%、f120~f150mm的钢球,以提高自磨机的处理量,而采用砾磨对一些矿石具有降低球耗和电耗,从而降低选矿成本的效果。

      中国铁矿石选厂有自磨机、棒磨机、砾磨机和球磨机,其中自磨机约占10%,棒磨机和砾磨机约占3%,其余基本上为球磨机,铁矿选矿厂生产中使用最多的是f2.7m×3.6m和f3.6m×4.0m规格的球磨机。

-预选设备中国有大石河、水厂、程潮吉山等29个铁矿选矿厂采用干式磁滑轮预选。

目前应用较好的有f800×1400mmCT—108型以及f1250×1270mm永磁磁滑轮(或称大块磁选机)。

采用密度较低的粗粒加重剂配制成密度较大的重悬浮液,用重介质振动溜槽进行铁矿石预选,排出夹石和围岩一般分选粒度为75~10mm处理量较大。

采用梯形、矩形、圆形和大粒跳汰机对弱磁性铁矿石进行不同粒度块矿预选的技术是成功的。

对15~0mm矿石采用ZXY型圆形跳汰机可预先排出产率约为13%含铁为14%的尾矿;对3010mm矿石采用AM30型大粒跳汰机预选可获得较高回收率的高品位铁精矿。

      -磁选设备细粒磁铁矿湿式磁选用单筒、双筒和三筒永磁磁选机进行分选,有f1200×3000mm(瑞典、芬兰、前苏联)和f1500×3000mm(前苏联)、f1500×1500mm(Krupp双筒)及CTS、CTB、CTN-1224型(中国)等各种型号,一段或二段磁选机多采用顺流型底槽;三段或四段为半逆流型;而球磨机排矿直接磁选的多用逆流型。

竖式还原焙烧炉曾用于鞍山式赤铁-石英岩进行磁化焙烧,在齐大山、包头和酒钢选矿厂进行焙烧磁选,生产铁精矿。

中国有130多座竖炉,容积为50m3、70m3、100m3和160m3。

回转焙烧炉在捷克和前联邦德国选矿厂进行褐铁矿和菱铁矿的磁化焙烧。

各种结构形式的干式感应辊式强磁选机、洪堡Jones型湿式平环强磁选机和在此基础上发展的多种类型的强磁选机,以及连续作业的瑞典Sala高梯度强磁选机在弱磁性铁矿石的选别中获得应用。

-浮选设备各种结构型号的浮选机用于处理细粒和微细粒嵌布的贫铁矿石。

国内外定型制造和使用的浮选机仍以机械搅拌式为主,并且有着同一发展趋势,即随着细贫难选物料处理量的与日俱增,向着充气量足够、生产能力大、电能消耗少、选别指标好以及便于操作和维护等方面发展。

代表产品有芬兰OK-16MX

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1