出租车计价器单片机c语言.docx

上传人:b****4 文档编号:3991282 上传时间:2022-11-27 格式:DOCX 页数:25 大小:249.69KB
下载 相关 举报
出租车计价器单片机c语言.docx_第1页
第1页 / 共25页
出租车计价器单片机c语言.docx_第2页
第2页 / 共25页
出租车计价器单片机c语言.docx_第3页
第3页 / 共25页
出租车计价器单片机c语言.docx_第4页
第4页 / 共25页
出租车计价器单片机c语言.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

出租车计价器单片机c语言.docx

《出租车计价器单片机c语言.docx》由会员分享,可在线阅读,更多相关《出租车计价器单片机c语言.docx(25页珍藏版)》请在冰豆网上搜索。

出租车计价器单片机c语言.docx

出租车计价器单片机c语言

一、设计目的

了解和掌握掉电存储芯片AT24C02、霍尔传感器A44E、数码管、驱动芯片74LS245等外部接口芯片器件的应用。

二、主要设计内容

实现出租车行驶里程和总金额的显示,预设起步价和起步公里数;实现清零、复位和掉电保护功能;实现对单价的调整。

三、重点研究问题

(1)按下启动按键,显示起步里程与起步价。

(2)按模拟传感器信号的按键,显示行驶里程与总金额。

(3)按键控制清零、复位、掉电保护、调整预设单价。

(4)在软件中实现起步价,单价。

四、主要技术指标

(1)数码管显示起步里程、单价,总里程、总金额。

(2)用按键控制清零、复位、掉电保护、调整预设单价。

五、设计成果要求

(1)源程序通过编译、运行

(2)软件烧录单片机硬件进行调试,运行

(3)实现所述功能

(4)电路板焊接、检测

(5)最终提交软硬件、设计说明书、外文翻译、毕业设计说明书等

设计开题报告

题目名称

基于单片机的出租车计价器的设计

设计的主要内容是利用51单片机实现出租车计价器的功能。

用数码管显示行驶里程和总金额。

并有清零,复位,掉电保护等功能。

1驱动芯片的选用:

设计中我们采用74LS245作为数码管的驱动芯片,用来提高数码管显示的亮度。

2按键替代霍尔传感器的选用:

我们选用按键替代传感器,主要因为它接线简单,价格便宜,同时对它的控制也是相对容易,易于实现的。

3显示器件的选用:

本次设计采用8段集成数码管作为显示电路,以便于连线,使电路简明易懂。

数码管显示的稳定性虽不及液晶屏,但其价格比液晶屏便宜,由于本设计简单,采用数码管显示较好。

4掉电保护芯片的选用:

选用存储器芯片AT24C02组成掉电保护电路。

采取的主要技术路线或方法

一、单片机芯片:

AT89S51单片机芯片采用40引脚的双列直插封装方式。

40条引脚如下:

1、主电源引脚Vss和Vcc

2、外接晶振引脚XTAL1和XTAL2

3、控制或与其它电源复用引脚RST/VPD,ALE/

/Vpp

4、输入/输出引脚P0.0-P0.7,P1.0-P1.7,P2.0-P2.7,P3.0-P3.7。

二、74LS245驱动芯片:

74LS245是我们常用的驱动芯片,用来驱动led或者其他的设备。

总线驱动器74LS245经常用作三态数据缓冲器,它也是8路同相三态双向总线收发器,可双向传输数据。

三、霍尔传感器:

霍尔传感器安装在车轮上,主要检测汽车行进的公里数,并产生一系列相应的脉冲输出,脉冲送到单片机进行处理,单片机根据程序设定通过计算脉冲数换算出行驶公里数,再根据从EEPROM中读取的价格等相关数据进行金额的计算,计算出的金额、里程实时地显示在数码管上。

本设计中采用按键替代。

四、掉电保护电路:

AT24C02是一个CMOS标准的EEPROM存储器,掉电时能保存数据。

五、显示电路:

显示电路采用的是三位一体共阴数码管显示。

预期的成果及形式

上电时显示全为零,通过按下启动按键来开始计价,数码管开始显示起步价和起步金额;按下模拟开关按键来产生一个脉冲信号,模拟行驶的里程;计算应付金额;按下停止按键,停止计价,数码管显示所走总里程和用户所需付总金额;按下清零按键,数码管全显示零,以备下次计价。

单片机断电后,数码管显示数据不丢失。

本电路以AT89S51单片机为中心,附加A44E霍尔传感器测距(本电路中用模拟开关替代),实现对出租车计价,采用AT24C02实现在系统掉电的时候保存单价,输出采用8段数码显示管,显示行驶总里程和总金额。

模拟出租车计价器设计:

进行里程显示,预设起步价和起步公里数;行程按全程收费,有复位功能和启动功能,启动后,开始计价。

我们采用单片机进行设计,可以用较少的硬件和适当的软件相互配合来实现设计要求,且灵活性强,可以通过软件编程来完成更多的附加功能,应用前景广阔。

关键字:

出租车计价器AT89S51单片机A44E霍尔传感器断电保存8段数码显示管

第1章绪论

1.1课题背景

我们知道,只要乘坐的出租车启动,随着行驶里程的增加,就会看到司机旁边的计价器里程数字显示的读数从零逐渐增大,而当行驶到某一值时(如2KM)计费数字显示开始从起步价(如4元)增加。

当乘客到站时,按下停止按键,计费数字显示总里程和总金额,它可以很直观的反映用户使用情况。

1.2.2主要设计内容及基本要求

利用AT89S51单片机,设计简单的出租车计价器。

在出租车计价器的总体设计中,我主要负责出租车计价器硬件设计。

其中主要的外围功能电路有:

驱动电路,按键控制电路,掉电保护电路,时钟部分,数码管显示电路等。

通过对以上各功能的设计,制作出的出租车计价器应具有以下功能:

上电时显示全为零,通过按下启动按键来开始计价,数码管开始显示起步价和起步金额;按下模拟开关按键来产生一个脉冲信号,模拟行驶的里程;数码管开始显示所走里程和所应付的金额,并逐渐增加;按下停止按键,停止计价,数码管显示所走总里程和用户所需付总金额,按下清零按键,数码管全显示零,以备下次计价。

方案二:

设计采用AT89S51单片机为主控器,以A44E霍尔传感器测距(按键替代),实现对出租车的基本的计价设计,并采用AT24C02实现在系统掉电的时候保存单价等信息,输出采用8段数码显示管。

利用单片机丰富的I/O端口,及其控制的灵活性,实现基本的计价功能。

系统结构图如下:

1.1系统结构图

通过比较以上两种方案,我们采用方案二实现出租车计价器的功能。

本电路设计的计价器能实现基本的计价功能,单片机计算总价的公式为:

总价=起步价+单价*(总里程-起步里程)+1。

AT89S51作为一个单片微型计算系统,灵活性高,其强大的控制处理功能和可扩展功能设计电路提供了很好的选择。

第2章系统硬件设计

2.1硬件设计说明

单片机是单片微型计算机的简称,单片机以其卓越的性能,得到广泛的应用,已经深入到各个领域。

在这次设计中,我们用到P0口和P2口,P0口为8位三态I/O口,此口为地址总线及数据总线分时复用;P2口为8位准双向口,与地址总线高八位复用;P0口和P2口都有一定的驱动能力,P0口的驱动能力较强。

设计中,为了能够让数码管更好的正常显示,我们采用了驱动电路来驱动。

在本次硬件设计中,我们考虑采用芯片74LS245来驱动数码管显示。

设计电路时,考虑到用里程(霍尔)传感器价格昂贵,且不便于试验检测,在设计中采用一个模拟开关来代替。

模拟开关一端接在P3.4口,另一端接地,通过来回高低电平的变化,每按两次,对应的里程数加一。

通过在程序中设置的里程和金额的信息,在加上驱动电路的设计,就可以在数码管上分别显示总金额和总里程。

在显示方面,可以用液晶显示,也可以用数码管进行显示。

由于在这次设计中只需要显示里程和金额信息,我们采用数码管进行显示。

这样既节约了成本,又可以达到显示的目的。

同时为了减少硬件的复杂度,我们采用了动态显示方式,选用了共阴极数码管。

为了焊接方便,我们选用了集成在一起的数码管。

我们还设计了控制按键,能够很好的对出租车计价器控制,如启动/停止按键,清零按键等。

2.2AT89S51单片机简介

AT89S51具有如下特点:

40个引脚,4kBytesFlash片内程序存储器,128bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

P0口有二个功能:

1、外部扩展存储器时,当做数据/地址总线。

2、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

P1口只做I/O口使用:

其内部有上拉电阻。

 

P2口有两个功能:

 

1、扩展外部存储器时,当作地址总线使用。

 

2、做一般I/O口使用,其内部有上拉电阻。

 

P3口有两个功能:

除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置。

图2.1AT89S51引脚图图2.2AT89S51封装图

设计中用到的单片机各管脚(图2.1)功能介绍如下:

VCC:

接+5V电源。

VSS:

接地。

时钟引脚:

XTAL1和XTAL2两端接晶振和30PF的电容,构成时钟电路。

它可以使单片机稳定可靠的运行。

RST:

复位信号输入端,高电平有效。

当在此引脚加两个机器周期的高电平时,就可以完成复位操作。

P1.0:

接启动/停止按键,控制计价。

P1.1:

接功能键。

P1.3:

接清零键。

P0口接数码管段选端,P2口接驱动芯片。

P3.4(T0):

接模拟开关按键,替代了出租车计价器中的霍尔传感器。

P3.1、P3.0口接掉电保护电路。

2.3硬件电路设计

按下计价按键时,显示起步价和起步里程范围,这些在程序中设置;当等于或超过两公里后,按计算总价的公式为:

总价=起步价+单价*(总里程-起步里程)+1进行计价。

本设计中,起步价为4元,起步里程为2公里,当然这些数据可以在程序中改写,以满足不同时期价格调整的需要。

下图是通过在KeilC中编译通过,并生成Hex文件,在PROTEUS中仿真通过的整体硬件原理图:

图2.3硬件原理图

2.4硬件组成

2.4.1驱动电路

74LS245是我们常用的芯片,用来驱动led或者其他的设备。

总线驱动器74LS244和74LS245经常用作三态数据缓冲器,74LS244为单向三态数据缓冲器,而74LS245为双向

三态数据缓冲器。

本设计用74LS245作为驱动芯片,双向总线发送器/接收器(3S)。

图2.4驱动芯片管脚图

74LS245主要电器特性的典型值如下:

引出端符号:

AA总线端

BB总线端

/G三态允许端(低电平有效)

DIR方向控制端

功能表:

表2.5功能表

利用74LS245来驱动数码管显示,单片机的P2.0到P2.5分别接A0到A5管脚,进行数据的传送,其中AB/BA接高电平,控制数据从A到B进行传送,B0到B5分别接数码管的位选端,驱动数码管依次显示。

P2.0到P2.5的数据通过A传送到B中的数据送到数码管,以达到显示数据信息的目的。

2.4.2显示电路

多数的应用系统,都要配输入和输出外设,LED显示器和LCD显示器,虽然LCD显示效果比较好,已经成为了一种发展趋势,但为了节约成本,我们选用了LED显示器(图2.6)。

在显示方面,我们选用了动态显示。

静态显示虽然亮度较高,接口编程容易,但是每位的段码线分别与一个8位的锁存器输出相连。

占用的I/O口线比较多,在显示位数较多的情况下,一般都采用动态显示方式。

利用动态显示的方法,由于LED显示器的余辉和人眼的视觉暂留现象,只要每位显示的时间间隔足够短,就仍能感觉到所有的数码管都在显示。

为了简化硬件,通常将所有位的段码线相应段并联在一起,由一个8位I/O口控制,在同一时刻,只让一位选通,如此循环,就可以使各位显示出将要显示的字符。

图2.6LED数码管图2.7集成数码管

LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。

再把多个这样的8字装在一起就成了多位的数码管了。

在本设计仿真中使用的是6个一组的共阴8段数码管(图2.7)。

找公共共阴和公共共阳的方法:

首先我们找个电源|稳压器(3到5伏)和1个1K(几百欧的也行)的电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的,找到一个就够了,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阴的了。

共阴极数码管,阴极接地,当某个发光二极管的阳极为高电平时,发光二极管点亮,对应的段就显示。

2.4.3复位电路

单片机的复位是由外部的复位电路实现的,复位电路通常采用上电自动复位和按钮复位两种方式。

上电自动复位是通过外部复位电路的电容充电来实现的。

除了上电复位外还需要按键手动复位(图2.8)。

按键手动复位有电平方式和脉冲方式两种。

其中电平复位是通过RST端经电阻与电源VCC接通而实现的。

单片机的复位速度比外围I/O接口电路快为

能够保证系统可靠的复位,在初始化程序中应安排一定的复位延迟时间。

图2.8复位电路

2.4.4掉电保护电路

掉电保护电路中采用了存储芯片AT24C02。

AT24C02是一个CMOS标准的EEPROM存储器,是AT24CXX系列(AT24C01/02/04/08/16)成员之一,这些EEPROM存储器的特点是功耗小、成本低、电源范围宽,静态电源电流约30uA~110uA,具有标准的I2C总线接口,是应用广泛的小容量存储器之一。

图2.9AT24C02引脚图

上图是AT24C02的引脚图,这个芯片是一个8脚芯片,内部存储器有256字节。

引脚功能介绍如下:

A0(引脚1):

器件地址的A0位,是器件地址的最低位,器件地址排列是A6A5A4A3A2A1A0R/W。

A1(引脚2):

器件地址的A1位。

A2(引脚3):

器件地址的A2位。

GND(引脚4):

地线。

SDA(引脚5):

数据总线引脚。

SCL(引脚6):

时钟总线引脚。

TEST(引脚7):

测试引脚。

Vcc(引脚8):

电源线引脚。

本设计采用掉电存储电路图如下:

图2.10掉电存储电路

2.4.5时钟电路

MCS-51单片机的各功能部件都是以时钟控制信号为基准,内部电路在时钟信号的控制下,严格地按时序执行指令进行工作,单片机本身如同一个复杂的同步时序电路,为了保证其各个部分同步工作,电路要在唯一的时钟信号控制下,严格地按照时序进行工作。

其实只需在时钟引脚连接上外围的定时控制元件,就可以构成一个稳定的自激振荡器。

为更好地保证振荡器稳定可靠地工作,谐振器和电容应尽可能安装得与单片机芯片靠近。

本设计中使用的振荡电路,由12MHZ晶体振荡器和两个约30PF的电容组成,在XTAL1和XTAL2两端跨接晶体,电容的大小不会影响振荡频率的高低。

在整个系统中为系统各个部分提供基准频率,以防因其工作频率不稳定而造成相关设备的工作频率不稳定,晶振可以在电路中产生振荡电流,发出时钟信号。

如图2.11所示。

图2.11时钟电路

2.4.6按键电路

按键控制电路中,单片机的P1.0管脚接启动/停止按键,通过软件编程,当按下按键计数器开始工作,开始计价;当弹起按键时,计数器停止工作,停止计价,启动/停止按键带自锁功能。

按下启动按键,开关处于导通状态,这时给P1.0送低电平信号,这时TR0=1,计数器开始工作,调用计价子程序开始计价。

清零按键接单片机的P1.3管脚,按下清零按键,P1.3为低电平,调用清零子程序,用于将显示数据清零,在程序中给各位赋0代码(0x3f),以达到清零的目的,方便下次计价。

另外为功能键,控制价格调整,这个按键是在没有按下启动/停止按键时有作用,计价过程中无效。

图2.12按键电路

第4章系统调试

4.1软件调试

4.1.3单片机仿真软件在线调试—PROTEUS

1.打开Proteus软件。

2.选择file菜单下的opendesign选项,找到所需的元器件,元器件上单击右键选中,再单击左键对其进行命名和赋值,接着在编辑器左边的一栏中,找出并绘制设计所要的各种元器件,按照电路图连接后并保存。

3.将用keil编译产生的hex文件下载到单片机中:

双击51单片机,在对话框中把保存过的hex文件打开,再单击确定。

4.单击左下角运行按钮,进行软件仿真调试,直到出现正确的结果。

下图为软件的仿真窗口图:

图4.2软件仿真窗口图

4.2.1电路元件检测

在焊接电路前,首先要进行元器件的检测。

检测主要是测出各个元器件的型号。

对于数码管的检测在显示电路中已介绍。

识别电阻时可根据各环的数量级和色码表,判断电阻的阻值。

排阻是将多个电阻集中封装在一起,组合制成的。

排阻具有装配方便、安装密度高等优点。

常用排阻有A型和B型。

A型排阻的引脚总是奇数的。

它的左端有一个公共端(用白色的圆点表示),常见的排阻有4、7、8个电阻,所以引脚共有5或8或9个。

B型排阻的引脚总是偶数的。

它没有公共端,常见的排阻有4个电阻,所以引脚共有8个。

排阻的阻值读法如下:

“103”表示:

10kΩ,“510”表示:

51Ω。

以此类推。

对于集成芯片的检测,就是根据它的管脚图,来识别各个引脚,以方便焊接。

4.3硬件检测

晶振部分使用示波器查看波形。

如果出现看不到12MHZ的正弦波形的现象,说明此部分电路不正常。

AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。

它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,ATMEL公司的功能强大,低价位AT89S51单片机可为您提供许多高性价比的应用场介,可灵活应用于各种控制领域。

主要性能参数:

·与MCS-51产品指令系统完全兼容

·4k字节在线系统编程(ISP)Flash闪速存储器

·1000次擦写周期

·4.0---5.5V的工作电压范围

·全静态工作模式:

0Hz---33MHz

·三级程序加密锁

·128×8字节内部RAM

·32个可编程I/O口线

·2个16位定时/计数器

·6个中断源

·全双工串行UART通道

·低功耗空闲和掉电模式

·中断可从空闲模式唤醒系统

·看门狗(WDT)及双数据指针

·掉电标识和快速编程特性

·灵活的在线系统编程(ISP一字节或页写模式)

功能特性概述:

AT89S51提供以下标准功能:

4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。

同时,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。

掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

引脚功能说明:

·Vcc:

电源电压

·GND:

·P0口:

P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。

作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写‘1’可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

·P1口:

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写‘1’,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,囚为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(In)。

Flash编程和程序校验期间P1接收低8位地址。

·P2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写‘1’,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,囚为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(In)。

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@Ri指令)时,P2口线的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。

Flash编程或校验时,P2亦接收高位地址和其它控制信号。

·P3口:

P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

作输入端时,被外部拉低的P3口将用上拉电阻输出电流(In)。

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能。

P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

·RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRTO位(地址8EH)可打开或关闭该功能。

DISRTO位缺省为RESET输出高电平打开状态。

·ALE/PROG:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,囚此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁正ALE操作。

该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

·PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

当访问外部数据存储器,没有两次有效的PSEN信号。

·EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

Flash存储器编程时,该引脚加上+12V的编程电压Vpp。

·XTAL1:

振荡器反相放大器及内部时钟发生器的输入端。

·XTAL2:

振荡器反相放大器的输出端。

·特殊功能寄存器:

特殊功能寄存器的于片内的空间分布的这些地址并没有全部占用,没有占用的地址亦不可使用,读这些地址将得到一个随意的数值。

而写这些地址单元将不能得到预期的结果。

·中断寄存器:

各中断允许控制位于IE寄存器,5个中断源的中断优先级控制位于IP寄存器。

·双时钟指针寄存器:

为更方便地访问内部和外部数据存储器,提供了两个16位数据指针寄存器:

DP0位于SFR(特殊功能寄存器)区块中的地址82H,83H和DP1位于地址84H,85H,当SFR中的位DPS=0选择DP0,而DPS=1则选择DP1。

用户应在访问相应的数据指针寄存器前初始化DPS位。

·电源空闲标志:

电源空闲标志(POF)在特殊功能寄存器SFR中PCON的第4位(PCON.4},电源打开时POF置‘1’,它可由软件设置睡眠状态并不为复位所影响。

·程序存储器:

如果EA引脚接地(GND),全部程序均执行外部存储器。

在AT89S51,假如EA接至Vcc(电源+),程序首先执行地址从0000H-OFFFH(4KB)内部程序存储器,而执行地址为1000H-FFFFH(60KB)的外部程序存储器。

·数据存储器:

AT89S51的具

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1