数学的含义.docx

上传人:b****4 文档编号:3452735 上传时间:2022-11-23 格式:DOCX 页数:25 大小:81.34KB
下载 相关 举报
数学的含义.docx_第1页
第1页 / 共25页
数学的含义.docx_第2页
第2页 / 共25页
数学的含义.docx_第3页
第3页 / 共25页
数学的含义.docx_第4页
第4页 / 共25页
数学的含义.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

数学的含义.docx

《数学的含义.docx》由会员分享,可在线阅读,更多相关《数学的含义.docx(25页珍藏版)》请在冰豆网上搜索。

数学的含义.docx

数学的含义

数学 

简介

名称来源

数学【shùxué】(希腊语:

μαθηματικ?

)西方源自于古这一词在希腊语的μ?

θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。

其形容词意义为和学习有关的或用功的,亦会被用来指数学的。

其在英语中表面上的复数形式,及在法语中的表面复数形式lesmathématiques,可溯至拉丁文的中性复数mathematica,由西塞hjt数学(math),以前我国古代把数学叫算术,又称算学,最后才改为数学。

数学的意义

  数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

它的基本要素是:

逻辑和直观、分析和推理、共性和个性。

虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

数学史

  基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。

  今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。

数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。

虽然许多以纯数学开始jhetryjetyjrtyjrtjtyjrtj的研究,但之后会发现许多应用。

  创立于二十世纪三十年代的法国的布尔巴基学派认为:

数学,至少纯数学,是研究抽象结构的理论。

结构,就是以初始概念和公理出发的演绎系统。

布学派认为,有三种基本的抽象结构:

代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

  

数学研究的各领域

  数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。

这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。

除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:

至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。

  数量

  数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。

整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。

  当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。

实数则可以被进一步广义化成复数。

数的进一步广义化可以持续至包含四元数及八元数。

自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。

另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:

阿列夫数,它允许无限集合之间的大小可以做有意义的比较。

  结构

  许多如数及函数的集合等数学物件都有着内含的结构。

这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。

此为抽象代数的领域。

在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。

向量的研究结合了数学的三个基本领域:

数量、结构及空间。

向量分析则将其扩展至第四个基本的领域内,即变化。

  空间

  空间的研究源自于几何-尤其是欧式几何。

三角学则结合了空间及

  

数,且包含有非常著名的勾股定理。

现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。

数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。

在微分几何中有着纤维丛及流形上的计算等概念。

在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。

李群被用来研究空间、结构及变化。

  基础与哲学

  为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。

德国数学家康托(GeorgCantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。

Cantor的工作给数学发展带来了一场革命。

由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:

“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 

  集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。

20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。

英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。

  数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。

就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。

现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。

数学的分类

  离散数学

  模糊数学

数学的五大分支

  1经典数学 

  2.近代数学

  3.计算机数学

  4.随机数学

  5.经济数学

数学分支

  1.算术

  2.初等代数

  3.高等代数

  4.数论

  5.欧几里得几何

  6.非欧几里得几何

  7.解析几何

  8.微分几何

  9.代数几何

  10.射影几何学

  11.几何拓扑学

  12.拓扑学

  13.分形几何

  14.微积分学

  15.实变函数论

  16.概率和统计学

  17.复变函数论

  18.泛函分析

  19.偏微分方程

  20.常微分方程

  21.数理逻辑

  22.模糊数学

  23.运筹学

  24.计算数学

  25.突变理论

  26.数学物理学

数学分类

  符号、语言与严谨

  在现代的符号中,简单的表示式可能描绘出复杂的概念。

此一图像即是由一简单方程所产生的。

  我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。

在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。

现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。

它被极度的压缩:

少量的符号包含著大量的讯息。

如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。

  数学语言亦对初学者而言感到困难。

如何使这些字有着比日常用语更精确的意思。

亦困恼着初学者,如开放和域等字在数学里有着特别的意思。

数学术语亦包括如同胚及可积性等专有名词。

但使用这些特别符号和专有术语是有其原因的:

数学需要比日常用语更多的精确性。

数学家将此对语言及逻辑精确性的要求称为“严谨”。

  严谨是数学证明中很重要且基本的一部分。

数学家希望他们的定理以系统化的推理依着公理被推论下去。

这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。

在数学中被期许的严谨程度因着时间而不同:

希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。

牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。

今日,数学家们则持续地在争论电脑辅助证明的严谨度。

当大量的计量难以被验证时,其证明亦很难说是有效地严谨。

数学的发展史

  世界数学发展史

  数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。

数学的希腊语Μαθηματικ?

mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。

  数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。

第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。

除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。

算术(加减乘除)也自然而然地产生了。

古代的石碑亦证实了当时已有几何的知识。

  更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。

历史上曾有过许多且分歧的记数系统。

  从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。

这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。

  到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。

17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。

在研究经典力学的过程中,微积分的方法被发明。

随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

  数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。

数学在历史上有着许多的发现,并且直至今日都还不断地发现中。

依据MikhailB.Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。

此一学海的绝大部分为新的数学定理及其证明。

国外数学名家

欧几里得

  欧几里得(希腊文:

Ευκλειδης,约公元前330年—前275年,亚历山大里亚),古希腊数学家,被称为“几何之父”。

他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。

欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人

阿基米德

  阿基米德(Archimedes公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。

出生于西西里岛的叙拉古。

阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。

后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。

阿基米德流传于世的数学著作有10余种,多为希腊文手稿。

卡尔·弗里德里克·高斯

  数学天才──高斯(C.F.Gauss)

  高斯是德国数学家、物理学家和天文学家。

  高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。

7岁那年,高斯第一次上学了。

  在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:

81297+81495+81693+…+100899。

说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。

数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。

一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。

  高斯的学术地位,历来被人们推崇得很高。

他有“数学王子”、“数学家之王”的美称。

艾萨克·牛顿

  牛顿(IsaacNewton)是英国较为著名的物理学家和数学学家。

  

艾萨克·牛顿

在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。

他对周围的一切充满好奇,但并不显得特别聪明。

  1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。

一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。

由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。

后来牛顿的棱镜实验也使他一举成名。

  牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有比较显著的贡献。

  牛顿有两句名言是大家所熟知的。

他在一封信中写道:

“如果我比别人看得远些,那是因为我站在巨人们的肩上。

”据说他还讲过:

“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的

  

戈特弗里德·威廉·凡·莱布尼茨

浩瀚的真理海洋,却还完全是个谜。

莱布尼茨

  戈特弗里德·威廉·凡·莱布尼茨(GottfriedWilhelmvonLeibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同牛顿为微积分的创建人。

他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不朽的贡献。

莱昂哈德·欧拉

  莱昂哈德·欧拉(LeonhardEuler,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。

他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。

欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:

y=F(x)(函数的定义由莱布尼兹在1694年给出)。

他是把微积分应用于物理学的先驱者之一。

勒奈·笛卡尔

  勒奈·笛卡尔(ReneDescartes),1596年3月31日生于法国都兰城。

笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。

解析几何的创始人。

笛卡儿是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。

他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。

同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。

笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。

中国古代数学发展史

  数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:

萌芽;体系的形成;发展;繁荣和中西方数学的融合。

中国古代数学的萌芽

  原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。

到原始公社末期,已开始用文字符号取代结绳记事了。

  西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。

为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。

据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。

  商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

  公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。

《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

  春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。

这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

  战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。

名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。

还提出了“一尺之棰,日取其半,万世不竭”等命题。

  而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。

墨家给出一些数学定义。

例如圆、方、平、直、次(相切)、端(点)等等。

  墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:

将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。

  名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。

名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。

中国古代数学体系的形成

  秦汉是封建社会的上升时期,经济和文化均得到迅速发展。

中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。

  《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。

例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。

其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。

就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。

  《九章算术》有几个显著的特点:

采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。

  这些特点是同当时社会条件与学术思想密切相关的。

秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。

最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。

  《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。

它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度以及阿拉伯传到欧洲,促进了世界数学的全新发展喔~

中国古代数学的发展

  魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。

吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。

赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。

  赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。

他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。

在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。

  刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。

他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。

刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。

  刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:

1,解决了一般立体体积的关键问题。

在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。

  东晋以后,中国长期处于战争和南北分裂的状态。

祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。

他们的数学工作主要有:

计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次方程的解法等。

  据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。

他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。

祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;

  祖冲之之子祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理。

祖暅应用这个公理,解决了刘徽尚未解决的球体积公式。

  隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。

唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。

王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。

此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。

  唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。

由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。

李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。

他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。

隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。

  算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。

其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。

尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。

但由于当时乘除算法仍然不能在一个横列中进行。

算珠还没有穿档,携带不方便,因此仍没有普遍应用。

  唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。

中国古代数学的繁荣

  960年,北宋王朝的建立结束了五代十国割据的局面。

北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。

1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。

这些都为数学发展创造了良好的条件。

  从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。

  从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。

杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1