东北大学matlab上机作业1文档格式.docx

上传人:b****8 文档编号:22339461 上传时间:2023-02-03 格式:DOCX 页数:30 大小:425.06KB
下载 相关 举报
东北大学matlab上机作业1文档格式.docx_第1页
第1页 / 共30页
东北大学matlab上机作业1文档格式.docx_第2页
第2页 / 共30页
东北大学matlab上机作业1文档格式.docx_第3页
第3页 / 共30页
东北大学matlab上机作业1文档格式.docx_第4页
第4页 / 共30页
东北大学matlab上机作业1文档格式.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

东北大学matlab上机作业1文档格式.docx

《东北大学matlab上机作业1文档格式.docx》由会员分享,可在线阅读,更多相关《东北大学matlab上机作业1文档格式.docx(30页珍藏版)》请在冰豆网上搜索。

东北大学matlab上机作业1文档格式.docx

234100

324100

000005

3、

A=magic(8)

642361606757

955541213515016

1747462021434224

4026273736303133

3234352928383925

4123224445191848

4915145253111056

858595462631

B=A(2:

2:

end,:

4、

sum(sym

(2).^[0:

63])

ans=

184********709551615

5、

t=[-1:

0.03:

-0.25,-0.249:

0.007:

0.249,0.25:

0.4:

1];

y=sin(1./t);

plot(t,y)

t=[-pi:

0.05:

-1.8,-1.799:

0.001:

-1.2,-1.2:

0.005:

1.2,1.201:

1.8,1.81:

pi];

y=sin(tan(t))-tan(sin(t));

6、

三维图xx=[-2:

.1:

-1.2,-1.1:

0.02:

-0.9,-0.8:

0.1:

0.8,0.9:

1.1,1.2:

2];

yy=[-1:

-0.2,-0.1:

0.1,0.2:

[x,y]=meshgrid(xx,yy);

z=1./(sqrt((1-x).^2+y.^2))+1./(sqrt((1+x).^2+y.^2));

surf(x,y,z),shadingflat;

zlim([0,15])

三视图

[x,y]=meshgrid(-2:

2);

subplot(221),surf(x,y,z),view(0,90);

subplot(222),surf(x,y,z),view(90,0);

subplot(223),surf(x,y,z),view(0,0);

7、

(1)symsx;

f=(3^x+9^x)^(1/x);

L=limit(f,x,inf)

L=

9

(2)symsxy;

f=(x*y)/(sqrt(x*y+1)-1);

L=limit(limit(f,x,0),y,0)

2

(3)Symsxy;

f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2+y^2));

8、

(1)symst;

x=log(cos(t));

y=cos(t)-t*sin(t);

f1=diff(y,t)/diff(x,t)

f1=

-(-2*sin(t)-t*cos(t))/sin(t)*cos(t)

(2)

symst;

f2=diff(y,t,2)/diff(x,t,2);

subs(f2,t,sym(pi)/3)

3/8-1/24*pi*3^(1/2)

9、

symsxyt;

f=int(exp(-t^2),t,0,x*y);

I=simple(x/y*diff(f,x,2)-2*diff(diff(f,x),y)+diff(f,y,2))

I=

-2*exp(-x^2*y^2)*(-x^2*y^2+1+x^3*y)

10、

(1)symsmn;

limit(symsum(1/((2*m)^2-1),m,1,n),n,inf)

1/2

(2)symsmn;

limit(symsum(n*(1/(n^2+m*pi)),m,1,n),n,inf)

1

11、

(1)symsat;

symsapositive;

x=a*(cos(t)+t*sin(t));

y=a*(sin(t)-t*cos(t));

I=simple(int((x^2+y^2)*sqrt(diff(x,t)^2+diff(y,t)^2),t,0,2*pi))

(2*pi^2+4*pi^4)*a^3

(2)symsxyabct;

x=c*cos(t)/a;

y=c*sin(t)/b;

P=y*x^3+exp(y);

Q=x*y^3+x*exp(y)-2*y;

ds=[diff(x,t);

diff(y,t)];

I=int([P,Q]*ds,t,0,pi)

-2/15*c*(-2*c^4+15*b^4)/b^4/a

12、

functionA=vander(v)

n=length(v);

v=v(:

);

A=sym(ones(n));

forj=n-1:

-1:

1,A(:

j)=v.*A(:

j+1);

end

symsabcde;

A=vander([abcde]);

B=simple(det(A))

(c-d)*(b-d)*(b-c)*(a-d)*(a-c)*(a-b)*(-d+e)*(e-c)*(e-b)*(e-a)

 

13.

A=[-2,0.5,-0.5,0.5;

0,-1.5,0.5,-0.5;

2,0.5,-4.5,0.5;

2,1,-2,-2];

[V,J]=jordan(sym(A))

V=

[0,1/2,1/2,-1/4]

[0,0,1/2,1]

[1/4,1/2,1/2,-1/4]

[1/4,1/2,1,-1/4]

J=

[-4,0,0,0]

[0,-2,1,0]

[0,0,-2,1]

[0,0,0,-2]

14、

数值解

A=[3,-6,-4,0,5;

1,4,2,-2,4;

-6,3,-6,7,3;

-13,10,0,-11,0;

0,4,0,3,4];

B=[3,-2,1;

-2,-9,2;

-2,-1,9];

C=[-2,1,-1;

4,1,2;

5,-6,1;

6,-4,-4;

-6,6,-3];

X=lyap(A,B,C),norm(A*X+X*B+C)

X=

-4.0569-14.51281.5653

0.035625.0743-2.7408

9.488625.9323-4.4177

2.696921.6450-2.8851

7.722931.9100-3.7634

2.7917e-013

解析解

functionX=lyap(A,B,C)

ifnargin==2,C=B;

B=A'

;

end

[nr,nc]=size(C);

A0=kron(A,eye(nc))+kron(eye(nr),B'

try

C1=C'

x0=-inv(A0)*C1(:

X=reshape(x0,nc,nr)'

catch,error('

singularmatrixfound.'

),end

C=-[-2,1,-1;

X=lyap(sym(A),B,C),norm(double(A*X+X*B+C))

[434641749950/107136516451,4664546747350/321409549353,-503105815912/321409549353]

[-3809507498/107136516451,-8059112319373/321409549353,880921527508/321409549353]

[-1016580400173/107136516451,-8334897743767/321409549353,1419901706449/321409549353]

[-288938859984/107136516451,-6956912657222/321409549353,927293592476/321409549353]

[-827401644798/107136516451,-10256166034813/321409549353,1209595497577/321409549353]

0

15、

functionF=funm(A,fun,x)

[V,J]=jordan(A);

v1=[0,diag(J,1)'

];

v2=[find(v1==0),length(v1)+1];

fori=1:

length(v2)-1

v_lambda(i)=J(v2(i),v2(i));

v_n(i)=v2(i+1)-v2(i);

m=length(v_lambda);

F=sym([]);

m

J1=J(v2(i):

v2(i)+v_n(i)-1,v2(i):

v2(i)+v_n(i)-1);

fJ=funJ(J1,fun,x);

F=diagm(F,fJ);

F=V*F*inv(V);

functionfJ=funJ(J,fun,x)

lam=J(1,1);

f1=fun;

fJ=subs(fun,x,lam)*eye(size(J));

H=diag(diag(J,1),1);

H1=H;

fori=2:

length(J)

f1=diff(f1,x);

a1=subs(f1,x,lam);

fJ=fJ+a1*H1;

H1=H1*H/i;

functionA=diagm(A1,A2)

A=A1;

[n,m]=size(A);

[n1,m1]=size(A2);

A(n+1:

n+n1,m+1:

m+m1)=A2;

symsxt;

A=[-4.5,0,0.5,-1.5;

-0.5,-4,0.5,-0.5;

1.5,1,-2.5,1.5;

0,-1,-1,-3];

A=sym(A);

B=expm(A*t),

C=funm(A,sin(x*t),x),D=funm(A,exp(x*t)*sin(x^2*exp(x*t)*t),x)

[1/2*exp(-3*t)-1/2*t*exp(-3*t)+1/2*exp(-5*t)+1/2*t^2*exp(-3*t),1/2*exp(-5*t)-1/2*exp(-3*t)+t*exp(-3*t),1/2*t*exp(-3*t)+1/2*t^2*exp(-3*t),1/2*exp(-5*t)-1/2*exp(-3*t)-1/2*t*exp(-3*t)+1/2*t^2*exp(-3*t)]

[1/2*t*exp(-3*t)+1/2*exp(-5*t)-1/2*exp(-3*t),1/2*exp(-3*t)+1/2*exp(-5*t),1/2*t*exp(-3*t),1/2*t*exp(-3*t)+1/2*exp(-5*t)-1/2*exp(-3*t)]

[1/2*t*exp(-3*t)-1/2*exp(-5*t)+1/2*exp(-3*t),-1/2*exp(-5*t)+1/2*exp(-3*t),exp(-3*t)+1/2*t*exp(-3*t),1/2*t*exp(-3*t)-1/2*exp(-5*t)+1/2*exp(-3*t)]

[-1/2*t^2*exp(-3*t),-t*exp(-3*t),-1/2*t^2*exp(-3*t)-t*exp(-3*t),exp(-3*t)-1/2*t^2*exp(-3*t)]

C=

[-1/2*sin(5*t)+1/2*sin(3*t)*t^2-1/2*cos(3*t)*t-1/2*sin(3*t),-1/2*sin(5*t)+cos(3*t)*t+1/2*sin(3*t),1/2*cos(3*t)*t+1/2*sin(3*t)*t^2,-1/2*sin(5*t)+1/2*sin(3*t)+1/2*sin(3*t)*t^2-1/2*cos(3*t)*t]

[-1/2*sin(5*t)+1/2*cos(3*t)*t+1/2*sin(3*t),-1/2*sin(5*t)-1/2*sin(3*t),1/2*cos(3*t)*t,-1/2*sin(5*t)+1/2*cos(3*t)*t+1/2*sin(3*t)]

[1/2*sin(5*t)+1/2*cos(3*t)*t-1/2*sin(3*t),1/2*sin(5*t)-1/2*sin(3*t),-sin(3*t)+1/2*cos(3*t)*t,1/2*sin(5*t)+1/2*cos(3*t)*t-1/2*sin(3*t)]

[-1/2*sin(3*t)*t^2,-cos(3*t)*t,-cos(3*t)*t-1/2*sin(3*t)*t^2,-sin(3*t)-1/2*sin(3*t)*t^2]

D=

[1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))+t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))-1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))-1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+t*exp(-3*t)*sin(9*t*exp(-3*t))+exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t)),1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))+t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)-1/2*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))+t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))-1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))-1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))]

[1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*exp(-3*t)*sin(9*t*exp(-3*t)),1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*t*exp(-3*t))]

[-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t)),-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*exp(-3*t)*sin(9*t*exp(-3*t)),exp(-3*t)*sin(9*t*exp(-3*t))+1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t)),-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*t*exp(-3*t))+1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t))]

[-1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))-t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t)),-t*exp(-3*t)*sin(9*t*exp(-3*t))-exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t)),-t*exp(-3*t)*sin(9*t*exp(-3*t))-exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))-1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))-t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t)),exp(-3*t)*sin(9*t*exp(-3*t))-1/2*t^2*exp(-3*t)*sin(9*t*exp(-3*t))-t*exp(-3*t)*cos(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*t*exp(-3*t))*(-6*t*exp(-3*t)+9*t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*t*exp(-3*t))*(2*t*exp(-3*t)-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))]

第二部分

(1)symstalpha;

f=sin(alpha*t)/t;

F=laplace(f)

F=

atan(alpha/s)

(2)symstalpha;

f=t^5*sin(alpha*t);

F=la

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 材料科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1