高中物理公式大全手册Word下载.docx

上传人:b****6 文档编号:20252494 上传时间:2023-01-21 格式:DOCX 页数:13 大小:27.66KB
下载 相关 举报
高中物理公式大全手册Word下载.docx_第1页
第1页 / 共13页
高中物理公式大全手册Word下载.docx_第2页
第2页 / 共13页
高中物理公式大全手册Word下载.docx_第3页
第3页 / 共13页
高中物理公式大全手册Word下载.docx_第4页
第4页 / 共13页
高中物理公式大全手册Word下载.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

高中物理公式大全手册Word下载.docx

《高中物理公式大全手册Word下载.docx》由会员分享,可在线阅读,更多相关《高中物理公式大全手册Word下载.docx(13页珍藏版)》请在冰豆网上搜索。

高中物理公式大全手册Word下载.docx

1.水平方向速度:

Vx=Vo 

2.竖直方向速度:

Vy=gt 

3.水平方向位移:

x=Vot 

4.竖直方向位移:

y=gt2/2 

5.运动时间t=(2y/g)1/2 

(通常又表示为(2h/g)1/2) 

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 

合速度方向与水平夹角β:

tgβ=Vy/Vx=gt/V0 

7.合位移:

s=(x2+y2)1/2, 

位移方向与水平夹角α:

tgα=y/x=gt/2Vo 

8.水平方向加速度:

ax=0;

竖直方向加速度:

ay=g 

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动 

1.线速度V=s/t=2πr/T 

2.角速度ω=Φ/t=2π/T=2πf 

3.向心加速度a=V2/r=ω2r=(2π/T)2r 

4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 

5.周期与频率:

T=1/f 

6.角速度与线速度的关系:

V=ωr 

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 

8.主要物理量及单位:

弧长(s):

(m);

角度(Φ):

弧度(rad);

频率(f);

赫(Hz);

周期(T):

秒(s);

转速(n);

r/s;

半径(r):

线速度(V):

角速度(ω):

rad/s;

向心加速度:

m/s2。

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功

3)万有引力 

1.开普勒第三定律:

T2/R3=K(=4π2/GM){R:

轨道半径,T:

周期,K:

常量(与行星质量无关,取决于中心天体的质量)} 

2.万有引力定律:

F=Gm1m2/r2 

(G=6.67×

10-11Nm2/kg2,方向在它们的连线上) 

3.天体上的重力和重力加速度:

GMm/R2=mg;

g=GM/R2 

{R:

天体半径(m),M:

天体质量(kg)} 

4.卫星绕行速度、角速度、周期:

V=(GM/r)1/2;

ω=(GM/r3)1/2;

T=2π(r3/GM)1/2{M:

中心天体质量} 

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;

V2=11.2km/s;

V3=16.7km/s 

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:

距地球表面的高度,

r地:

地球的半径} 

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解) 

(1)常见的力 

1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 

2.胡克定律F=kx{方向沿恢复形变方向,k:

劲度系数(N/m),x:

形变量(m)} 

3.滑动摩擦力F=μFN 

{与物体相对运动方向相反,μ:

摩擦因数,FN:

正压力(N)} 

4.静摩擦力0≤f静≤fm 

(与物体相对运动趋势方向相反,fm为最大静摩擦力) 

5.万有引力F=Gm1m2/r2 

10-11Nm2/kg2,方向在它们的连线上) 

6.静电力F=kQ1Q2/r2 

(k=9.0×

109Nm2/C2,方向在它们的连线上) 

7.电场力F=Eq(E:

场强N/C,q:

电量C,正电荷受的电场力与场强方向相同) 

8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:

F=BIL,B//L时:

F=0) 

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)物理量符号及单位B:

磁感强度(T),L:

有效长度(m),I:

电流强度(A),V:

带电粒子速度(m/s),q:

带电粒子(带电体)电量(C);

(5)安培力方向用左手定则判定。

2)力的合成与分解 

1.同一直线上力的合成同向:

F=F1+F2,反向:

F=F1-F2 

(F1>

F2) 

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:

F=(F12+F22)1/2 

3.合力大小范围:

|F1-F2|≤F≤|F1+F2| 

4.力的正交分解:

Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力) 

1.牛顿第一运动定律(惯性定律):

物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 

2.牛顿第二运动定律:

F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 

3.牛顿第三运动定律:

F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:

反冲运动} 

4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 

5.超重:

FN>

G,失重:

FN<

G{加速度方向向下,均失重,加速度方向向上,均超重} 

6.牛顿运动定律的适用条件:

适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 

平衡状态是指物体处于静止或匀速直线状态 

五、振动和波(机械振动与机械振动的传播) 

1.简谐振动F=-kx{F:

回复力,k:

比例系数,x:

位移,负号表示F的方向与x始终反向} 

2.单摆周期T=[2π(l/g)]1/2 

{l:

摆长(m),g:

当地重力加速度值,成立条件:

摆角θ<

;

l>

>

r} 

3.受迫振动频率特点:

f=f驱动力 

4.发生共振条件:

f驱动力=f固,A=max

5.机械波、横波、纵波 

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;

波速大小由介质本身所决定} 

7.声波的波速(在空气中)0℃:

332m/s;

20℃:

344m/s;

30℃:

349m/s;

(声波是纵波) 

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:

障碍物或孔的尺寸比波长小,或者相差不大 

9.波的干涉条件:

两列波频率相同(相差恒定、振幅相近、振动方向相同) 

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

七、功和能(功是能量转化的量度) 

动能定理:

∑W=W∑F=△EK=EK2 

-EK1

重力做功与重力势能改变的关系:

WG=-△EP=EP1 

–EP2

机械能守恒定律:

E1=E2 

或EK1+EP1=EK2+EP2 

或△EK 

=-△EP

功能关系:

WF除G=△E=E2 

–E1

八、分子动理论、能量守恒定律 

1.阿伏加德罗常数NA=6.02×

1023/mol;

分子直径数量级10-10米 

2.油膜法测分子直径d=V/s{V:

单分子油膜的体积(m3),S:

油膜表面积(m)2} 

3.分子动理论内容:

物质是由大量分子组成的;

大量分子做无规则的热运动;

分子间存在相互作用力。

4.分子间的引力和斥力

(1)r<

r0,f引<

f斥,F分子力表现为斥力 

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) 

(3)r>

r0,f引>

f斥,F分子力表现为引力 

(4)r>

10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), 

W:

外界对物体做的正功(J),Q:

物体吸收的热量(J),ΔU:

增加的内能(J),涉及到第一类永动机不可造出

6.热力学第二定律 

克氏表述:

不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:

不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出 

7.热力学第三定律:

热力学零度不可达到{宇宙温度下限:

-273.15摄氏度(热力学零度)} 

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<

温度升高,内能增大ΔU>

吸收热量,Q>

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

九、气体的性质 

1.气体的状态参量:

温度:

宏观上,物体的冷热程度;

微观上,物体内部分子无规则运动的剧烈程度的标志, 

热力学温度与摄氏温度关系:

T=t+273{T:

热力学温度(K),t:

摄氏温度(℃)} 

体积V:

气体分子所能占据的空间,单位换算:

1m3=103L=106mL 

压强p:

单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力, 

标准大气压:

1atm=1.013×

105Pa=76cmHg(1Pa=1N/m2) 

2.气体分子运动的特点:

分子间空隙大;

除了碰撞的瞬间外,相互作用力微弱;

分子运动速率很大 

3.理想气体的状态方程:

p1V1/T1=p2V2/T2 

{PV/T=恒量,T为热力学温度(K)} 

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场 

1.两种电荷、电荷守恒定律、元电荷:

(e=1.60×

10-19C);

带电体电荷量等于元电荷的整数倍 

2.库仑定律:

F=kQ1Q2/r2(在真空中){F:

点电荷间的作用力(N),k:

静电力常量k=9.0×

109Nm2/C2,Q1、Q2:

两点电荷的电量(C), 

r:

两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 

3.电场强度:

E=F/q(定义式、计算式){E:

电场强度(N/C),是矢量(电场的叠加原理),q:

检验电荷的电量(C)} 

4.真空点(源)电荷形成的电场E=kQ/r2 

{r:

源电荷到该位置的距离(m),Q:

源电荷的电量} 

5.匀强电场的场强E=UAB/d{UAB:

AB两点间的电压(V),d:

AB两点在场强方向的距离(m)} 

6.电场力:

F=qE{F:

电场力(N),q:

受到电场力的电荷的电量(C),E:

电场强度(N/C)} 

7.电势与电势差:

UAB=φA-φB,UAB=WAB/q=-ΔAB 

/q 

8.电场力做功:

WAB=qUAB=Eqd{WAB:

带电体由A到B时电场力所做的功(J),q:

带电量(C), 

UAB:

电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:

匀强电场强度,d:

两点沿场强方向的距离(m)} 

9.电势能:

A=qφA 

{A:

带电体在A点的电势能(J),q:

电量(C),φA:

A点的电势(V)} 

10.电势能的变化ΔAB=B 

-A 

{带电体在电场中从A位置到B位置时电势能的差值} 

11.电场力做功与电势能变化ΔAB=-WAB=-qUAB 

(电势能的增量等于电场力做功的负值) 

14.带电粒子在电场中的加速(Vo=0):

W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 

类平抛运动 

垂直电场方向:

匀速直线运动L=Vot(在带等量异种电荷的平行极板中:

E=U/d) 

平行电场方向:

初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 

(1)两个完全相同的带电金属小球接触时,电量分配规律:

原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

3)常见电场的电场线分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零, 

导体内部没有净电荷,净电荷只分布于导体外表面;

(7)电子伏(eV)是能量的单位,1eV=1.60×

10-19J;

十一、恒定电流 

1.电流强度:

I=q/t{I:

电流强度(A),q:

在时间t内通过导体横载面的电量(C),t:

时间(s)} 

2.欧姆定律:

I=U/R{I:

导体电流强度(A),U:

导体两端电压(V),R:

导体阻值(Ω)} 

3.电阻、电阻定律:

R=ρL/S{ρ:

电阻率(Ωm),L:

导体的长度(m),S:

导体横截面积(m2)} 

4.闭合电路欧姆定律:

I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 

{I:

电路中的总电流(A),E:

电源电动势(V),R:

外电路电阻(Ω),r:

电源内阻(Ω)} 

5.电功与电功率:

W=UIt,P=UI{W:

电功(J),U:

电压(V),I:

电流(A),t:

时间(s),P:

电功率(W)} 

6.焦耳定律:

Q=I2Rt{Q:

电热(J),I:

通过导体的电流(A),R:

导体的电阻值(Ω),t:

通电时间(s)} 

7.纯电阻电路中:

由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 

8.电源总动率、电源输出功率、电源效率:

P总=IE,P出=IU,η=P出/P总 

电路总电流(A),E:

电源电动势(V),U:

路端电压(V),η:

电源效率} 

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比) 

电阻关系(串同并反)R串=R1+R2+R3+ 

1/R并=1/R1+1/R2+1/R3+ 

电流关系I总=I1=I2=I3 

I并=I1+I2+I3+ 

电压关系U总=U1+U2+U3+ 

U总=U1=U2=U3 

功率分配P总=P1+P2+P3+ 

P总=P1+P2+P3+ 

10.欧姆表测电阻 

(1)电路组成

(2)测量原理 

两表笔短接后,调节Ro使电表指针满偏,得 

Ig=E/(r+Rg+Ro) 

接入被测电阻Rx后通过电表的电流为 

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 

由于Ix与Rx对应,因此可指示被测电阻大小 

(3)使用方法:

机械调零、选择倍率档、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:

测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻 

12.滑动变阻器在电路中的限流接法与分压接法 

限流接法:

电压调节范围小,电路简单,功耗小

分压接法:

电压调节范围大,电路复杂,功耗较大

注1)单位换算:

1A=103mA=106μA;

1kV=103V=106mV;

1MΩ=103kΩ=106Ω 

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/4r;

十二、磁场 

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am 

2.安培力F=BIL;

(注:

L⊥B){B:

磁感应强度(T),F:

安培力(F),I:

电流强度(A),L:

导线长度(m)} 

(1)安培力的方向可由左手定则判定 

(2)磁感线的特点及其常见磁场的磁感线分布要掌握 

十三、电磁感应 

1.[感应电动势的大小计算公式] 

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:

感应电动势(V),n:

感应线圈匝数,ΔΦ/Δt:

磁通量的变化率} 

2)E=BLV垂(切割磁感线运动){L:

有效长度(m)} 

2.磁通量Φ=BS{Φ:

磁通量(Wb),B:

匀强磁场的磁感应强度(T),S:

正对面积(m2)} 

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:

由负极流向正极} 

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失P损=(P/U)2R;

(P损:

输电线上损失的功率,P:

输送电能的总功率,U:

输送电压,R:

输电线电阻)

十五、电磁波 

2.电磁波在真空中传播的速度c=3.00×

108m/s,λ=c/f{λ:

电磁波的波长(m),f:

电磁波频率} 

(2)麦克斯韦电磁场理论:

变化的电(磁)场产生磁(电)场;

十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性) 

1.两种学说:

微粒说(牛顿)、波动说(惠更斯)〔 

2.双缝干涉:

中间为亮条纹;

亮条纹位置:

=nλ;

暗条纹位置:

=(2n+1)λ/2(n=0,1,2,3,、、、);

条纹间距{:

路程差(光程差);

λ:

光的波长;

λ/2:

光的半波长;

d两条狭缝间的距离;

l:

挡板与屏间的距离} 

3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关, 

光的颜色按频率从低到高的排列顺序是:

红、橙、黄、绿、蓝、靛、紫(助记:

紫光的频率大,波长小) 

4.薄膜干涉:

增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4

5.光的衍射:

光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下, 

光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播

*6.光的偏振:

光的偏振现象说明光是横波 

7.光的电磁说:

光的本质是一种电磁波。

电磁波谱(按波长从大到小排列):

无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。

红外线、紫外线、伦琴射线的发现和特性、产生机理、实际应用 

8.光子说,一个光子的能量E=hν{h:

普朗克常量=6.63×

10-34J.s,ν:

光的频率} 

9.爱因斯坦光电效应方程:

mVm2/2=hν-W{mVm2/2:

光电子初动能,hν:

光子能量,W:

金属的逸出功} 

(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

(2)其它相关内容:

光的本性学说发展史/泊松亮斑/光电效应的规律光子说/光电管及其应用/光的波粒二象性/物质波。

十八、原子和原子核 

1.α粒子散射试验结果a)大多数的α粒子不发生偏转;

(b)少数α粒子发生了较大角度的偏转;

(c)极少数α粒子出现大角度的偏转(甚至反弹回来) 

2.原子核的大小:

10-15~10-14m,原子的半径约10-10m(原子的核式结构) 

4.原子核的组成:

质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数} 

5.天然放射现象:

α射线(α粒子是氦原子核).β射线(高速运动的电子流).γ射线(波长极短的电磁波). 

α衰变与β衰变.半衰期(有半数以上的原子核发生了衰变所用的时间)。

γ

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1