一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx

上传人:b****6 文档编号:17727421 上传时间:2022-12-08 格式:DOCX 页数:23 大小:1.53MB
下载 相关 举报
一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx_第1页
第1页 / 共23页
一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx_第2页
第2页 / 共23页
一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx_第3页
第3页 / 共23页
一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx_第4页
第4页 / 共23页
一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx

《一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx(23页珍藏版)》请在冰豆网上搜索。

一种新的方法通过移动的2D激光测距仪检测管线变形Word文档下载推荐.docx

Pipelinedeformation;

LaserRangeFinder(LRF)

ⅠINTRODUCTION

Buriedinfrastructuresuchaswaterandgassupplypipesaresubjecttosurfaceliveloadsasaresultofvehicleloadingandconstructionofsurfacefacilities.Theliveloads,groundmovementsduetoearthquakeorsimilarcausescouldmakethepipelinesfailure,includingpipedeflection,bendinganddeformationetc.Pipelinedeformationisalsoappliedtoestimatethestressinthepipeline,andthustokeepthe

pipelinestressbelowthecriticallevel[1].Therefore,itisnecessarytodetectpipelinedeformationregularly.

Traditionaltechniquesfordeformationdetectioninclude:

on-sitevisualinspection,photogrammetricsurveys(terrestrialoraerial),preciseconventionalsurveys,andgeotechnicalmeasurementsusingeithercontinuousdatacollectionorobservationepochs[2].ThemostrecentapproachesutilizetheGlobalPositioningSystem(GPS),opticalfibregyroscope[3],sensornetwork,etc.tohelpthedetecting.ThemethodwithGPScannotbeappliedforundergroundpipelines.Thecostofthedetectionsystemwithanopticalfibregyroscopehindersitbeusedwidely.Asensorsysteminstalledwithremotewirelesshasthecapabilitiestomonitorpipelines.Thissystemisrelativecostlyandshouldbeinstalledbeforehand.

In-piperobotswithCCTV,whichhavealonghistoryofdevelopment,havebeenemployedasmajortoolstomaintainpipelineutilities.However,pipelinedeformationishardtodetectaccuratelybyvisualinspection.Inthispaper,wefixaLRFonthein-pipeinspectionrobottofindthedistancebetweentherobotandtheinsidewallofthepipeline.Inthisway,weexpecttogetthethree-dimensionalreconstructionofthepipelines.Wefinditisagoodwaytodetectpipelinedeformation.AlthoughtheLRFcangetaccuraterangeinformation,therobotposturechangesinstantaneouswhentherobotisrunninginthepipeline,whichmakesthedeformationdetectiondifficult.

Thispaperisstructuredasfollows:

InsectionⅡwepresenttherobotsystemwithamoving2DLRF.TheframesoftheLRF,inspectionrobotandpipeareinstalledandtheirtransitionmatrixesareanalyzedinsectionⅢ.InsectionⅣ,wedescribehowtocalculatethepipelinedeformationwiththereceiveddatafromtheLRF.InsectionⅤwediscusstheexperimentalresultsanddemonstratetheaccuracyofthesystemandmethods.Finally,wepresentconclusionandfutureworkinsectionⅥ.

ⅡROBOTICSYSTEMANDCALIBRATION

ATheRoboticSystem

AsshowninFig1,theroboticsystemisawheeledmobilerobotwithCCTVforundergroundpipelinesinspection.APTZcameraisfixedonthearmoftherobot.Thepipelinecanbemonitoredandinspectedfromthevisualinformationcapturedbythecameraastherobotrunsinthepipeline.However􀋈

thepipedeformationcannotbemeasuredbyeyesightfromthisvisualinformation.Todetectthepipedeformation,aLRFisusedtofindthedistancefromthesensortotheinsidewall.

Fig.1Theroboticsystem

WechooseHOKUYOUBG-04LX[4]producedbyJapanastherangefindsensor.Itcanmeasure682stepson240°

peronerotation,andthereforetheangularresolutionis0.352°

ona2Dplane.Althoughitcan’tmeasurethewhole360°

thisrangeisenoughforourapplication.Thebelow120°

ofthepipelinewhichcan’tdetectisoftenfilledwithwater.Thissystemisalsoequippedwithencoderstomeasurethedistancewhichtherobotcoveredandaninclinometertoobservethepostureoftherobot.

BCalibration

BecausetheLRFfindsthedistancefromthesensortothewallortheobstacles,itsinstallationpositionisimportant.TheLRFisfixedhorizontallyinthemiddlebodyoftherobot.Tomakemaximizeusetheeffectivescope,thesensorisfixedontherobotwhereitcanfindtheup240°

.Inthisway,whenthereissomewaterinthepipe,itstillcanfindmostoftheinsidewallofthepipeline.

Afterfixation,wedesignasimplymethodtogetandcalibratetheheightofthesensor.AsshowninFig.2,weusethetableinourlaboratoryascalibrateplanewhichishorizontal.SincethebrightnessofthetargetinfluencestheprecisionoftheLRF[5],wechooseawhiteplanewhichisgoodforreflectivity.Furthermore,togetverticaldistancebetweentheLRFandplanes,weonlyselectthefrontstepwhoseindexnumberis382.ThischaracterizationisobservedbyChan-Soo[5].

Fig.2Calibration

AsshowninFig.2,Thedistancebetweentheplaneofthetableandgroundisd0,whichcanbemeasuredbyametrerule.ThedistancebetweentheLRFandtheplaneofthetableisdi,whichcanbedetectedbytheLRF.Wecalculatetheheightofthesensordjasfollows:

dj=d0-di

(1)

Wherediisthesensorreadingofthe382ndstep.However,thevalueofdiisdifferenteverytimewhentheLRFmeasures682stepson240°

peronerotation.Togettheminimummeasuringerror,wedetectdintimesandusethearithmeticmean,whichisgivenby

(2)

Thenwegettheheightofthesensordjasfollows:

dj=d0–di(3)

ⅢTANSFORMATIONANDPOSTUREANALYSIS

AThethreeframes

Wedescribethepostureoftheinspectionrobotmovinginroundpipeswiththecoordinates(x,y,z)ofoneoftheirpointswithrespecttotheinertialbasisandtheirEulerangles(ϕ,θ,ψ).

Fig.3Thethreeframesareestablished

Aninertialbaseframe{XWYWZW}isfixedinthepipeswithaxis-ZWalignedwiththeaxisoftheroundpipes,whileamovingframe{XRYRZR}isattachedtotheinspectionrobot.Therobotposturecanbedescribedintermsofthethreecoordinatesx0,y0,z0oftheoriginPofthemovingframeandtheorientationangle(ϕ,θ,ψ)ofthemovingframe,bothwithrespecttothebaseframewiththeoriginatP.Thequantities(ϕ,θ,ψ)arethebodyyaw,pitch,androlloftherobot,whichisshownasinFigure3.Anotherframe{XLYLZL}isattachedontheLRF.

BTransformationMatrix

ThedatacollectedbytheLRFisbasedonthecoordinateoftheLRF,namelyintheframe{XLYLZL},buttherealpipelinedeformationisrespecttothebaseframe.Therefore,thetransformationmatrixfromtheframeoftheLRFtothebaseframeshouldbededuced.AsshowninFig.3,thetransformationmatrixfromtheframeoftheLRFtotheframeoftherobotisasfollowing:

where(xL0,yL0,zL0)isthecoordinatesofthecentreoftheLRFintheframeoftherobot.

Thetransformationmatrixfromtheframeoftherobottothebaseframeis

Where

(6)

whichcanbededucedaccordingtothedefinitionofEulerangles[6],and

Therefore,thetransformationmatrixfromtheframeoftheLRFtothebaseframeisgivenby

Forthewheeledmobilerobotworkinginroundpipes,ithas3degreesoffreedomifthepostureisdescribedintermsofthreecoordinatesx0,y0,z0andtheorientationangle(ϕ,θ,ψ)[6].Twooftheorientationangle(ϕ,θ,ψ)canbeobservedbyatwo-axisinclinometer.Thedistanceoftherobotran,namelyz0canbedetectedbytheencoder.Therefore,thetransformationmatrixcanbecalculatedinstantaneously.

CPostureanalysisoftheinspectionrobotsinroundpipes

Thepostureofwheeledmobilerobotsinroundpipescanbeanalyzedbythreecasesasfollows.

(1)Therobotishorizontal.Inthiscase,thepostureanglessatisfy

ϕ=θ=ψ=0asshowninFig.4(a).Fourwheelsoftherobotkeepintouchwiththewallofthepipesinthiscase.

(2)TherobotisslantedbutitsdirectionisparalleltotheaxisofthepipesasshowninFig.4(b).Inthiscase,thepostureanglessatisfyϕ=0,

θ=0andψ≠0.Whenthepostureangleϕisrelativelylarge,therobotwillslidetothebottomorevenbeoverturned.(3)Therobotisslantedbutitsdirectionisnotparalleltotheaxisofthepipes/ducts,whichisequivalenttotheconditionsϕ≠0,

θ≠0andψ≠0asshowninFig.4(c).Onlythreewheelsofthefour-wheelrobotstayintouchwiththewallatthesametimeinthiscase.

(a)Firstcaseϕ=θ=ψ=0(b)Secondcaseϕ=0,θ=0andψ≠0(c)Thirdcaseϕ≠0,θ≠0andψ≠0

Fig.4Differentpostureoftherobotinthepipeline

AsweseefromFig.4,thefirstandthesecondcasehaveperfectpostureforcollectingtheaccurateinformationandareeasytocalculatethepipelinedeformation.Inthesecases,thedatacollectedbytheLRFneednotrotatetransformationifweonlycalculatethedeformationrate.Unfortunately,thesetwocasesarespecialcondit

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1