年产3.5万吨丙烯腈合成工段工艺设计.docx

上传人:zf 文档编号:11872950 上传时间:2023-04-06 格式:DOCX 页数:35 大小:374.77KB
下载 相关 举报
年产3.5万吨丙烯腈合成工段工艺设计.docx_第1页
第1页 / 共35页
年产3.5万吨丙烯腈合成工段工艺设计.docx_第2页
第2页 / 共35页
年产3.5万吨丙烯腈合成工段工艺设计.docx_第3页
第3页 / 共35页
年产3.5万吨丙烯腈合成工段工艺设计.docx_第4页
第4页 / 共35页
年产3.5万吨丙烯腈合成工段工艺设计.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

年产3.5万吨丙烯腈合成工段工艺设计.docx

《年产3.5万吨丙烯腈合成工段工艺设计.docx》由会员分享,可在线阅读,更多相关《年产3.5万吨丙烯腈合成工段工艺设计.docx(35页珍藏版)》请在冰豆网上搜索。

年产3.5万吨丙烯腈合成工段工艺设计.docx

化工工艺设计

课程设计

年产3.5万吨丙烯腈合成工段工艺设计

年级

专业

化学工程与工艺

学号

姓名

指导教师

设计成绩

完成日期

年月日

《课程设计》成绩评定栏

评定基元

评审要素

评审内涵

分值

评分

签名栏

设计说明,

50%

格式规范

内容完整

格式是否规范

10

评阅教师签名

内容是否完整

10

工艺计算

正确、完整和规范

物料恒算

10

热量衡算

10

设备设计和选型

10

设计图纸,40%

图纸规范

标注清晰

方案流程图

10

评阅教师签名

工艺物料流程图

10

带控制点的工艺流程图

20

平时成绩,10%

上课出勤

上课出勤考核

5

指导教师签名

制图出勤

制图出勤考核

5

合计

100

化工工艺设计

课程设计任务书

学号

学生姓名

专业(班级)

设计题目

年产3.5万吨丙烯腈合成工段工艺设计

1.生产能力:

35000吨/年

2.原料:

丙烯85%,丙烷15%(摩尔分率);液氨100%

3.产品:

1.8%(wt)丙烯腈水溶液

4.生产方法:

丙烯氨氧化法

5.丙烯腈损失率:

3%

6.设计裕量:

6%

7.年操作日:

300天

1.确定设计方案,并画出流程框图(要求见4

(1));

2.物料衡算,热量衡算

3.主要设备的工艺设计计算

4.绘图要求:

(1)流程框图(CAD或者PPT绘,截图在方案设计中);

(2)方案流程图(CAD或手绘,A3图纸);

(3)工艺物料流程图(带物料表,CAD或手绘,A3图纸);

(4)制带控制点的工艺流程图(CAD或手绘,A3图纸);

5.编写设计说明书

1.设计计算:

1.5周

2.工艺流程图与设计说明书:

1周

3.答辩:

0.5周

第一周:

物料衡算、热量衡算及主要设备的工艺设计计算

第二周:

画图,撰写设计说明书,

第三周:

答辩

《化工工艺设计手册》第四版(上下册),中国石化集团上海工程有限公司编,化学工业出版社,2009年

《化学化工物性参数手册》,青岛化工学院等编,化学工业出版社,2002年

目录

年产3.5万吨丙烯睛合成工段工艺设计 1

第一部分概述 1

1.1 丙烯睛的性质 1

1.1.1 丙烯精的物理性质 1

1.1.2 丙烯脂的化学性质及应用 2

1.2 丙烯睛的生产技术的发展 3

1.2.1 国外的发展情况 3

1.2.2 国内发展概况 4

1.3 丙烯睛生产工艺研究进展 5

1.4 丙烯氨氧化的原理 6

1.4 .1化学反应 6

1.4 .2催化剂 7

第二部分生产方案选择 8

第三部分工艺流程设计 8

3.1丙烯睛工艺流程示意图 8

3.2小时生产能力 9

第四部分物料衡算和热量衡算 10

4.1反应器的物料衡算和热量衡算 10

4. 1.1计算依据 10

4.1.2 物料衡算 10

4.1.3 热量衡算 12

4.2空气饱和塔的物料衡算和热量衡算 14

4.2.1计算依据 14

4.2.2物料衡算 14

4.2.3热量衡算 15

4.3氨中和塔物料衡算和热量衡算 16

4.3.1计算依据 16

4.3.2物料衡算 17

4.3.3热量衡算 18

4.4换热器物料衡算和热量衡算 21

4.4.1计算依据 21

4.4.2物料衡算 21

4.4.3热量衡算 22

4.5水吸收塔物料衡算和热量衡算 23

4.5.1计算依据 23

4.5.2物料衡算 23

4.5.3热量衡算 26

4.6空气水饱和塔釜液槽 27

4.6.1计算依据 27

4.6.2物料衡算 28

4.6.3热量衡算 28

4. 7丙烯蒸发器热量衡算 29

4. 7.1计算依据 29

4. 7.2有关数据 29

4. 7.3热衡算求丙烯蒸发器的热负荷和冷冻盐水用量 29

4.8丙烯过热器热量衡算 30

4.8.1计算依据 30

4.8.2热量衡算求丙烯过热器热负荷和加热蒸汽量 30

4.9氨蒸发器热量衡算 30

4.9.1计算依据 30

4.9.2有关数据 30

4.9.3热衡算求氨蒸发器的热负荷和加热蒸汽用量 31

4. 10氨气过热器 31

4. 10.1计算依据 31

4. 10.2热衡算求气氨过热器的热负荷和加热蒸汽用量 31

4.11混合器 31

4.11.1计算依据 31

4.11.2热衡算求进口温空气的温度t 32

4.12空气加热器的热量衡算 32

4.12.1计算依据 32

4.12.2热衡算求空气加热器的热负荷和加热蒸汽量 33

第五部分主要设备的工艺计算 33

5. 1合成反应器 33

5. 1.1计算依据 33

5. 1.2浓相段直径 33

5. 1.3浓相段高度 34

5. 1.4扩大段(此处即稀相段)直径 34

5. 1.5扩大段高度 35

5.1.6 浓相段冷却装置的换热面积 35

5.1.7 稀相段冷却装置的换热面积 36

5.2空气饱和塔 36

5. 2.1计算依据 36

5. 2.2塔径的确定 37

5. 2.3填料高度 39

5. 3水吸收塔 39

5. 3.1计算依据 39

5. 3.2塔径的确定 40

5. 3.3填料高度 41

5.4丙烯蒸发器 43

5.4.1计算依据 43

5.4. 2丙烯蒸发器换热面积 43

5.5循环冷却器 45

5.5.1计算依据 45

5.5.2计算换热面积 45

5.6氨蒸发器 48

5.6.1计算依据 48

5.6.2计算换热面积 48

5.7氨气过热器 49

5.7.1计算依据 49

5.7.2计算换热面积 49

5. 8丙烯过热器 50

5. 8.1计算依据 50

5. 8.2计算换热面积 50

5.9空气加热器 51

5.9.1计算依据 51

5.9.2计算换热面积 51

5.10循环液泵 53

5.11空气压缩机 53

5.12中和液贮槽 54

第五部分课程设计心得 55

第六部分附录 56

6.1参考文献 56

6.3附图 57

年产3.5万吨丙烯睛合成工段工艺设计

摘要:

本设计为年产3.5万吨丙烯睛的合成段工艺设计,在设计中采用了丙烯氨氧化制丙烯睛法,此法能有效降低生产成本。

该设计对丙烯睛的性质、应用、国内外发展、生产方法等进行了简单介绍。

本设计的重点在于计算丙烯氨氧化生产丙烯睛过程中的物料衡算、热量衡算和主要设备的工艺计算。

通过设计计算得出流化床浓相段总高是16米,直径为6.9米,催化剂堆体积是294.9立方米,稀相段高度为10米,直径是9米,达到了预期目标。

第一部分概述

1.1丙烯腈的性质

1.1.1丙烯腈的物理性质

丙烯腈是一种非常重要的有机化工原料,在合成纤维、树脂、橡胶急胶粘剂等领域有着广泛的应用。

丙烯腈,英文名Acrylonifrile(简称为ACN),化学分子式:

CH2=CH-CN;分子量:

53.1。

丙烯腈在常温下是无色或淡黄色液体,剧毒,有特殊气味;可溶于丙酮、苯、四氯化碳、乙醚和乙醇等有机溶剂;与水互溶,溶解度见表1-1。

丙烯腈在室内允许浓度为0.002MG/L,在空中的爆炸极限为3.05~17.5%(体积)。

因此,在生产、贮存和运输中,必须有严格的安全防护措施。

丙烯腈和水、苯、四氯化碳、甲醇、异丙醇等会成二元共沸混合物,和水的共沸点为71℃,共沸点中丙烯腈的含量为88%(质量),在有苯乙烯存在下,还能形成丙烯腈—苯乙烯—水三元共沸混合物。

丙烯腈的主要物理性质见表1-2。

表1-1丙烯腈与水的相互溶解度

温度/℃

水在丙烯腈中的溶解度(质量)/%

丙烯腈在水中的溶解度(质量)/%

0

2.10

7.15

10

2.55

7.17

20

3.08

7.30

30

3.82

7.51

40

4.85

7.90

50

6.15

8.41

60

7.65

9.10

70

9.21

9.90

80

10.95

11.10

表1-2丙烯腈的主要物理性质

性质

指标

性质

指标

性质

指标

沸点(101.3KPa)

78.5℃

燃点/℃

481

蒸汽压/KPa

熔点/℃

—82.0

比热容/J.kg-1.K-1

20.92±0.03

8.7℃时

6.67

相对密度(d426)

0.0806

蒸发潜热(0~77℃)

32.6kJ/mol

45.5℃时

33.33

粘度(25℃)

0.34

生成热(25℃)

151kJ/mol

77.3℃时

101.32

折射率(nD25)

1.3888

燃烧热

1761kJ/mol

临界温度

246℃

闪点/℃

0

聚合热(25℃)

72kJ/mol

临界压力

3.42MPa

1.1.2丙烯腈的化学性质及应用

丙烯腈分子中含有双键及氰基(-CN),其化学性质非常活泼,可以发生加成、聚合、水解、醇解、腈基及氢乙基化等反应。

聚合反应和加成反应都发生在丙烯腈的C=C双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。

除自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、氯乙烯、丙烯酰胺等中的一种或几种发生共聚反应,由此可制得合成纤维、塑料、涂料和粘合剂等。

丙烯腈经电解加氢偶联反应可以制得已二腈。

氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。

氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。

丙烯腈与氨反应可制得1,3丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。

丙烯腈主要用来生产ABS树脂,丙烯酰胺、丙烯酸纤维、己二睛和苯乙烯-己二睛树脂等,目前国内供不应求,每年需大量进口来满足市场需求,2000年进口量超过150kt。

1.2丙烯腈的生产状况

1.2.1世界丙烯腈生产与消费概况

全世界丙烯腈的生产主要集中在美国、西欧和日本等国家和地区。

全世界1999年丙烯腈总生产能力为,523.3万t(见表1-3)。

美国、日、西欧丙烯腈生产能力合计为357万t,占世界总能力的66.9%。

1999年世界丙烯腈需求量为480万t,产量470万t。

预计到2000年,世界丙烯腈总生产能力将达到585万t,产量及消费量将达到507万t。

其中用于腈纶的消费量为275万t,用于ABS、AS为126万t,其它106万t(见表1-4)。

今年台塑公司4月和年末各有10万t/a装置投产、美国Solutia公司8月25万t/a装置建成,还会增加45万t生产能力。

2000年是日本旭化成、三菱化学和韩国东西石油化学、泰光产业等公司的定期检修年,这会缓和对新增能力投产的冲击。

表1-31999年世界丙烯腈生产能力(万t/a)

国家和地区

生产能力

国家和地区

生产能力

美国

164.2

土耳其

9.0

德国

44

巴西

9.0

意大利

19

南非

7.5

荷兰

18.5

印度

3.0

西班牙

11.5

罗马尼亚

8.0

英国

28.0

保加利亚

4.5

墨西哥

16.5

日本

71.8

韩国

37

俄罗斯

24

中国(总计)

38.8

中国台湾省

18.0

合计

532.3

表1-4世界丙烯腈消费结构(万t)

年份

1995

1996

1997

1998

2000

生产能力

463

508

533

545

585

产量

415

437

451

469

507

消费量

415

437

451

469

507

腈纶

231

244

251

260

275

ABS/AS

100

107

110

115

126

其它

84

86

90

94

106

开工率(%)

90

86

85

86

87

1.2.2国内生产概况

我国内烯腈生产起步于1968年。

八十年代开始,我国丙烯腈工业发展很快,从国外引进技术目前正在运行的生产装置有9套(包括中国台湾省),总生产能力为58.8万t,加上采用国内技术的生产装置,总生产能力为59.3万t。

正在计划建设的生产装置有上海石化公司25万t/a,金陵石化公司6.6万t/a。

另外,有不少装置也准备将其生产能力扩大。

到2000年,我国丙烯腈总生产能力可达80多万t,其中中国大陆丙烯腈生产能力可达42万~45万t/a,台湾省丙烯脂生产能力为38万t/a。

这样,我国2000年丙烯腈总生产能力将居世界第二位,而仅次于美国。

我国丙烯腈生产能力。

见表1-5。

表1-5我国丙烯腈生产能力(万t/a)

生产厂家

生产能力

采用技术

备注

上海石化股份有限公司

5

BP技术

实际可达到7

大庆石化总厂化工一厂

6

BP技术

大庆油田聚合物厂

6

BP技术

齐鲁石化公司丙烯腈厂

4

BP技术

齐鲁石化公司齐胜化工厂

0.5

国内技术

兰化公司石化厂

3.2

BP技术

抚顺石化公司腈纶厂

5

BP技术

计划扩展7

吉化公司化肥厂

6.6

BP技术

安庆石化公司腈纶厂

5

BP技术

台湾CPDC公司

18

BP技术

合计

59.3

1.3我国丙烯腈发展方向

1.4丙烯氨氧化的原理

1.4.1化学反应

在工业生产条件下,丙烯氨氧化反应是一个非均相催化氧化反应:

与此同时,在催化剂表面还发生如下一系列主要的副反应。

(1)生成乙腈(ACN):

(2)生成氢氰酸(HCN)。

(3)生成丙烯醛。

(4)生成二氧化碳。

上述副反应中,生成乙腈和氢氰酸的反应是主要的。

CO2、CO和H2O可以由丙烯直接氧化得到,也可以由丙烯腈、乙腈等再次氧化得到。

除上述副反应外,还有生成微量丙酮、丙腈、丙烯酸和乙酸等副反应。

1.4.2催化剂

丙烯氨氧化所采用的催化剂主要有两类,即Mo系和Sb系催化剂。

(1)Mo系催化剂工业上最早使用的是P-Mo-Bi-O(C-A)催化剂,其代表组成为PBi9Mo12O52。

活性组分为MoO3和Bi2O3.Bi的作用是夺取丙烯中的氢,Mo的作用是往丙烯中引入氧或氨。

因而是一个双功能催化剂。

P是助催化剂,起提高催化剂选择性的作用。

这种催化剂要求的反应温度较高(460~490℃),丙烯腈收率60%左右。

由于在原料气中需配入大量水蒸气,约为丙烯量的3倍(mol),在反应温度下Mo和Bi因挥发损失严重,催化剂容易失活,而且不易再生,寿命较短,只在工业装置上使用了不足10年就被C-21、C-41等代替。

(2)Sb系催化剂Sb系催化剂在60年代中期用于工业生产,有Sb-U-O、Sb-Sn-O和Sb-Fe-O等。

初期使用的Sb-U-O催化剂活性很好,丙烯转化率和丙烯腈收率都较高,但由于具有放射性,废催化剂处理困难,使用几年后已不采用。

Sb-Fe-O催化剂由日本化学公司开发成功,即牌号为NB-733A和NB-733B催化剂。

据文献报道,催化剂中Fe/Sb比为1∶1(mol),X光衍射测试表明,催化剂的主体是FeSbO4,还有少量的Sb2O4。

工业运转结果表明,丙烯腈收率达75%左右,副产乙腈生成量甚少,价格也比较便宜,添加V、Mo、W等可改善该催化剂的耐还原性。

1.4.3反应机理和动力学

丙烯氨氧化生成丙烯腈的反应机理,目前主要有两种观点。

可简单地用下式表示。

第二部分生产方案选择

第三部分工艺流程设计

3.1丙烯腈工艺流程示意图

3.2小时生产能力

按年工作日300天,丙烯腈损失率3%,设计裕量为6%,年产量为3.5万吨计算,则每天每小时产量:

第四部分物料衡算和热量衡算

4.1反应器的物料衡算和热量衡算

4.1.1计算依据

(1)丙烯腈产量5307.36kg/h,即F=100.03kmol/h

(2)原料组成(摩尔分数)丙烯(C3H6)85%,丙烷(C3H8)15%

(3)进反应器的原料配比(摩尔分数)为

C3H6:

NH3:

O2:

H2O=1:

1.05:

23:

3

反应后各产物的单程收率为:

物质

丙烯腈(AN)

氰化氢(HCN)

乙腈(CAN)

丙烯醛(ACL)

CO2

摩尔收率

0.6

0.065

0.07

0.007

0.12

(4)操作压力

进口:

0.203MPa,出口:

0.162MPa

(5)反应器进口气体温度110℃,反应温度470℃,出口气体温度360℃

4.1.2物料衡算

(1)反应器进口原料气中各组分的流量

C3H6:

C3H8:

NH3:

O2:

H2O:

N2:

(2)反应器出口混合气中各组分的流量

丙烯腈:

5307.36kg/hF=100.03kmol/h

乙腈:

丙烯醛:

CO2:

HCN:

C3H8:

N2:

O2:

C3H6:

NH3:

H2O:

(3):

反应器物料平衡表

流量和组成

组分

反应器进口

反应器出口

kmol/h

kg/h

%(mol)

%(wt)

kmol/h

kg/h

%(mol)

%(wt)

C3H6

166.72

7002.10

6.18

9.60

23.02

966.98

0.83

1.32

C3H8

29.42

1294.53

1.09

1.78

29.42

1294.53

1.06

1.78

NH3

175.06

2975.95

6.49

4.08

25.01

425.17

0.90

0.58

O2

383.46

12270.59

14.22

16.82

92.20

2950.40

3.31

4.05

N2

1442.54

40391.12

53.48

55.38

1442.54

40391.12

51.79

55.37

H2O

500.16

9002.88

18.54

12.34

961.48

17306.64

34.52

23.73

丙烯腈

(AN)

0

0

0

0

100.03

5307.36

3.59

7.28

乙腈

(ACN)

0

0

0

0

17.51

717.77

0.63

0.98

氰化氢

(HCN)

0

0

0

0

32.51

877.78

1.17

1.20

丙烯醛

(ACL)

0

0

0

0

1.17

65.53

0.04

0.09

CO2

0

0

0

0

60.02

2640.84

2.16

3.62

合计

2697.36

72937.17

100

100

2784.91

72944.12

100

100

4.1.3热量衡算

查阅相关资料获得各物质各物质0~110℃、0~360℃、0~470℃的平均定压比热容

物质

C3H6

H2O

AN

HCN

ACN

ACL

0~110℃

1.841

2.05

2.301

0.941

1.046

1.883

0~360℃

2.678

3.013

2.636

1.004

1.088

2.008

1.874

1.640

1.933

1.966

1.130

0~470℃

2.929

3.347

2.939

1.046

1.109

2.092

2.029

1.724

2.10

2.172

1.213

(1)浓相段热衡算求浓相段换热装置的热负荷及产生蒸汽量

110℃,反应器入口混合气

470℃,浓相段出口混合气

25℃,反应器入口混合气

25℃,浓相段出口混合气

假设如下热力学途径:

各物质25~t℃平均比热容用0~t℃的平均比热容代替,误差不大

因此:

若热损失取的5%,则需有浓相段换热装置取出的热量(即换热装置的热负荷)为:

浓相段换热装置产生0.405MPa的饱和蒸汽(饱和温度143℃)

143℃饱和蒸汽焓:

143℃饱和水焓:

所以:

(2)稀相段热衡算求稀相段换热装置的热负荷及产生蒸汽量

以0℃气体为衡算基准

进入稀相段的气体带入热为:

离开稀相段的气体带出热为:

热损失取4%,则稀相段换热装置的热负荷为:

稀相段换热装置产生0.405的饱和蒸汽,产生的蒸汽量为:

4.2空气饱和塔的物料衡算和热量衡算

4.2.1计算依据

(1)入塔空气压力0.263MPa,出塔空气压力0.243MPa

(2)空压机入口空气温度30℃,相对温度80%,空压机出口气体温度170℃

(3)饱和塔气、液比为152.4(体积比),饱和度0.81

(4)塔顶喷淋液为乙腈解吸塔釜液,温度105℃,组成如下:

组分

AN

ACN

氰醇

ACL

合计

%(Wt)

0.005

0.008

0.0005

0.0002

99.986

100

(5)塔顶出口湿空气的成分和量按反应器入口气体的要求为:

O2:

383.46kmol/h,即12270.59kg/h

N2:

1442.54kmol/h,即40391.12kg/h

H2O:

500.16kmol/h,即9002.88kg/h

4.2.2物料衡算

(1)进塔空气量

查得30℃,相对湿度80%时空气温含量为0.022kg水气/kg干空气.因此,进塔空气带入的水蒸气量为:

(2)进塔热水量

气、液比为152.4,故进塔喷淋液量为:

塔顶喷淋液105℃的密度为,因此进塔水的质量流量为:

(3)出塔湿空气量

出塔气体中的O2、N2、H2O的量与反应器入口气体相同,因而:

O2:

383.46kmol/h,即12270.59kg/h

N2:

1442.54kmol/h,即40391.12kg/h

H2O:

500.16kmol/h,即9002.88kg/h

(4)出塔液量

4.2.3热量衡算

(1)空气饱和塔出口气体温度

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1