化学镍金工艺讲座.docx

上传人:b****5 文档编号:8300751 上传时间:2023-01-30 格式:DOCX 页数:29 大小:50.58KB
下载 相关 举报
化学镍金工艺讲座.docx_第1页
第1页 / 共29页
化学镍金工艺讲座.docx_第2页
第2页 / 共29页
化学镍金工艺讲座.docx_第3页
第3页 / 共29页
化学镍金工艺讲座.docx_第4页
第4页 / 共29页
化学镍金工艺讲座.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

化学镍金工艺讲座.docx

《化学镍金工艺讲座.docx》由会员分享,可在线阅读,更多相关《化学镍金工艺讲座.docx(29页珍藏版)》请在冰豆网上搜索。

化学镍金工艺讲座.docx

化学镍金工艺讲座

一、概述

化学镍金又叫沉镍金,业界常称为无电镍金(ElectrolessNickelImmersionGold)又称为沉镍浸金.

PCB化学镍金是指在裸铜面上化学镀镍,然后化学浸金的一种可焊性表面涂覆工艺.它既有良好的接触导通性,而且具有良好的装配焊接性能,同时它还可以同其它表面涂覆工艺配合使用.随着日新月异的电子业的民展,化学镍金工艺所显出的作用越来越重要.

二、化学镍金工艺原理

2.1化学镍金催化原理

2.1.1催化

作为化学镍金的沉积,必须在催化状态下,才能发生选择性沉积.Ⅷ族元素及Au等许多金属都可以作为化学镍的催化晶体.铜原子由于不具备化学镍沉积的催化晶种的特性,所以通过置换反应可使铜面沉积所需要的催化晶种.

2.1.2钯活化剂

PCB业界大都使用PdSO4或PdCl2作为化学镍前的活化剂

在活化制程中,其化学反应如下:

Pd2++Cu→Pd+Cu2+

2.2化学镍原理

2.2.1化学镍

在钯(或其它催化晶体)的催化作用下,Ni2+被NaH2PO2还原沉积在裸铜表面.当镍沉积覆盖钯催化晶体时,自催化反应将继续进行,直到达到所需要之镍层厚度.

2.2.2化学反应

在催化条件下,化学反应产生镍沉积的同时,不但伴随着P的析出,而且产生氢气的逸出.

主反应:

Ni2++2H2PO2-+2H2O→Ni+2HPO32-+4H++H2↑

副反应:

4H2PO2-→2HPO32--+2P+2H2O+H2

2.2.3反应机理

H2PO2-+H2O→H++HPO32-+2H

Ni2++2H→Ni+2H+

H2PO2-+H→H2O+OH-+P

H2PO2-+H2O→H++HPO32-+H2↑

2.2.4作用

化学镍的厚度一般控制在3~5μm,其作用同金手指电镀镍一样,不但对铜面进行有效保护,防止铜的迁移,而且具备一定硬度和耐磨性能,同时拥有良好的平整度.在镀件浸金保护后,不但可以取代拨插不频繁的金手指用途(如计算机内存条),同时还可以避免金手指附近连接导电处斜边时所遗留裸铜切口.

2.3浸金原理

2.3.1浸金

是指在活性镍表面,通过化学置换反应沉积薄金.

化学反应:

2Au(CN)2-+Ni→2Au+Ni2++4CN-

2.3.2作用

浸金的厚度一般控制在0.05~0.1μm,对镍面具有良好的保护作用,而且具备很好的接触导通性能.很多需按键接触的电子器械(如手机、电子字典),都采用化学浸金来保护镍面.

三、化学镍金工艺流程

3.1工艺流程简介

作为化学镍金流程,只要具备6个工作站就可满足其生产要求.

3~7min

1~2min

0.5~4.5min

2~6min

20~30min

7~11min

除油

微蚀

预浸

活化

沉镍

沉金

3.2工艺控制

3.2.1除油缸

一般情况,PCB沉镍金采用酸性除油剂来处理制板,其作用在于去除铜面之轻度油脂及氧化物,达到铜面清洁及增加润湿效果的目的.它应当具备不伤SoiderMask(绿油),低泡型易水洗的特点.

除油缸之后通常为二级市水洗,如果水压不稳定或经常变化,则将逆流水洗设计为三及市水洗更佳.

3.2.2微蚀缸

微蚀的目的在于清洁铜面氧化及前工序遗留残渣,保持铜面新鲜及增加化学镍层的密着性,常用微蚀液为酸性过硫酸钠溶液.

Na2S2O8:

80~120g/L

硫酸:

20~50ml/L

沉镍金生产也有使用硫酸双氧水或酸性过硫酸钾微蚀液来进行的.

由于铜离子对微蚀速率影响较大,通常须将铜离子的浓度控制有5~25g/L,以保证微蚀速率处于0.5~1.5μm,生产过程中,换缸时往往保留1/5~1/3缸母液(旧液),以保持一定的铜离子浓度,也有使用少量氯离子加强微蚀效果.

另外,由于带出的微蚀残液,会导致铜面在水洗过程中迅速氧化,所以微蚀后水质和流量以及浸泡时间都须特别考虑.否则,预浸缸会产生太多的铜离子,继而影响钯缸寿命.所以,在条件允许的情况下(有足够的排缸),微蚀后二级逆流水洗之后,再加入5%左右的硫酸浸洗,经二级逆流水洗之后进入预浸缸.

3.2.3预浸缸

预浸缸在制程中没有特别的作用,只是维持活化缸的酸度以及使铜面在新鲜状态(无氧化物)下,进入活化缸.

理想的预浸缸除了Pd之外,其它浓度与活化缸一致.实际上,一般硫酸钯活化系列采用硫酸作预浸剂,盐酸把钯活化系列采用盐酸作预浸剂,也有使用铵盐作预浸剂(PH值另外调节).否则,活化制程失去保护会造成钯离子活化液局部水解沉淀.

3.2.4活化缸

活化的作用是在铜面析出一层钯,作为化学镍起始反应之催化晶核.其形成过程则为Pd与Cu的化学置换反应.

从置换反应来看,Pd与Cu的反应速度会越来越慢,当Pd与Cu完全覆盖后(不考虑浸镀的疏孔性),置换反应即会停止,但实际生产中,人们不可能也不必要将铜面彻底活化(将铜面完全覆盖).从成本上讲,这会使Pd的消耗大幅大升.更重要的是,这容易造成渗镀等严重品质问题.

由于Pd的本身特性,活化缸存在着不稳定这一因素,槽液中会产生细微的(5m滤芯根本不可能将其过滤)钯颗粒,这些颗粒不但会沉积在PCB的Pad位上,而且会沉积在基材、绿油以及缸壁上.当其积累到一定程度,就有可能造成PCB渗镀以及缸壁发黑等现象.

影响钯缸稳定性的主要原因除了药水系列不同之外,钯缸控制温度和钯离子浓度则是首要考虑的问题.温度越低,钯离子浓度越低,越有利于钯缸的控制.但不能太低,否则会影响活化效果,引起漏镀发生.

通常情况下,钯缸温度设定在20~30℃,其控制范围应在±1℃,而钯离子浓度则控制在20~40ppm,至于活化效果,则按需要选取适当的时间.

当槽壁及槽底出现灰黑色的沉积物,则需硝槽处理.其过程为:

加入1:

1硝酸,启动循环泵2小时以上或直到槽壁灰黑色沉积物完全除去为止.适当时可考虑加热,但不可超过50℃,以免空气污染.

另外,也有人认为活化带出的钯离子残液在水洗过程中会造成水解,从而吸附在基材上引起渗镀,所以,应在活化逆流水洗之后,多加硫酸或盐酸的后浸及逆流水洗的制程.

事实上,正常情况下,活化带出的钯离子残液体,在二级逆流水洗过程中可以被洗干净.吸附在基材上的微量元素,在镍缸中不足以导致渗镀的出现.另一方面,如果说不正常因素导致基材吸附大量活化残液,并不是硫酸或盐酸能将其洗去,只能从根源去调整钯缸或镍缸.增加后浸及逆流水洗,其作用只是避免水中Pd含量太多而影响镍缸.

需要留意的是,水洗缸中少量的Pd带入镍缸,并不会对镍缸造成太大的影响,所以不必太在意活化后水洗时间太短,一般情况下,二级水洗总时间控制在1~3min为佳.尤其重要的是,活化后水洗不可使用超声波装置,否则,不但导致大面积漏镀,而且渗镀问题依然存在.

3.2.5沉镍缸

化学沉镍是通过Pd的催化作用下,NaH2PO2水解生成原子态H,同时H原子在Pd催化条件下,将镍离子还原为单质镍而沉积在裸铜面上.

作为化学沉积的金属镍,其本身也具备催化能力.由于其催化能力劣于钯晶体,所以反应初期主要是钯的催化作用在进行.当镍的沉积将钯晶体完全覆盖时,如果镍缸活性不足,化学沉积就会停止,于是漏镀问题就产生了.这种渗镀与镍缸活性严重不足所产生的漏镀不同,前者因已沉积大约20μ"的薄镍,因而漏镀Pad位在沉金后呈现白色粗糙金面,而后者根本无化学镍的沉积,外观至发黑的铜色.

从化学镍沉积的反应看出,在金属沉积的同时,伴随着单质磷的析出.而且随着PH值的升高,镍的沉积速度加快的同时,磷的析出速度减慢,结果则是镍磷合金的P含量降低.反之,随着PH值的降低,镍磷含金的P含量升高.

化学镍沉积中,磷含量一般在7~11%之间变化.镍磷合金的抗蚀性能优于电镀镍,其硬度也比电镀镍高.

在化学沉镍的酸性镀液中,当PH6时,镀液很容易产生Ni(OH)2沉淀.所以一般情况,生产中PH值控制在4.5~5.2之间.由于镍沉积过程产生氢离子(每个镍原子沉积的同时释放4个氢离子),所以生产过程中PH的变化是很快的,必须不断添补碱性药液来维持PH值的平衡.

通常情况下,氯水和氢氧化钠都可以用于生产维持PH值的控制,两者在自动补药方面差别不大,但在手动补药时就应特别关注.加入氨水时,可以观察到蓝色镍氨络离子出现,随即扩散时蓝色消失,说明氨水对化学镍是良好的PH调整剂.在加入氢氧化钠溶液时,槽液立即出现白色氢氧化镍沉淀粉末析出,随着药水扩散,白色粉末在槽液的酸性环境下缓慢溶解.所以,当使用氢氧化钠溶液作为化学镀的PH调整剂时,其配制浓度不能太高,加药时应缓慢加入.否则会产生絮状粉末,当溶解过程未彻底完成前,絮状粉末就会出现镍的沉积,必须将槽液过滤干净后,才可以重新开始生产.

在化学镍沉积的同时,会产生亚磷酸盐(HPO32-)的副产物,随着生产的进行,亚磷酸盐浓度会越来越高,于是反应速度受生成物浓度的长高而抑制,所以镍缸寿命末期与初期的沉积速度相差1/3则为正常现象.但此先天不足可采用调整反应物浓度方式予以弥补,开缸初期Ni2+浓度控制在4.60g/L,随着MTO的增加Ni2+浓度控制值随之提高,直至5.0g/L停止.以维持析出速度及磷含量的稳定,以确保镀层品质.

影响镍缸活性最重要的因素是稳定剂的含量,常用的稳定剂是Pb(CH3COO)2或硫脲,也有两种同时使用的.稳定剂的作用是控制化学沉镍的选择性,适量的稳定剂可以使活化后的铜面发生良好的镍沉积,而基材或绿油部分则不产生化学沉积.当稳定剂含量偏低时,化学沉镍的选择性变差,PCB表面稍有活性的部分都发生镍沉积,于是渗镀问题就发生了.当稳定剂含量偏高时,化学沉积的选择性太强,PCB漏铜面只有活化效果很好的铜位才发生镍沉积,于是部分Pad位出现漏镀的现象.

镀覆PCB的装载量(以裸铜面积计)应适中,以0.2~0.5dm2/L为宜.负载太大会导致镍缸活性逐渐升高,甚至导致反应失控;负载太低会导致镍缸活性逐渐降低,造成漏镀问题.在批量生产过程中,负载应尽可能保持一致,避免空缸或负载波动太大的现象.否则,控制镍缸活性的各参数范围就会变得很窄,很容易导致品质问题发生.

镀液应连续过滤,以除去溶液中的固体杂质.镀液加热时,必须要有空气搅拌和连续循环系统,使被加热的镀液迅速传播.当槽内壁沉积镍层时,应该及时倒缸(将药液移至另一备用缸中进行生产),然后用25%~50%(V/V)的硝槽进行褪除,适当时可考虑加热,但不可超过50℃.

至于镍缸的操作控制,在温度方面,不同系列沉镍药水其控制范围不同.一般情况下,镍缸操作范围86±5℃,有的药水则控制在81±5℃.在生产中,具体设定根据试板结果来定,不同型号的制板,有可能操作温度不同.通常一个制板的良品操作范围只有±2℃,个别制板也有可能小于±1℃.在浓度控制方面,采用对Ni2+的控制来调节其它组分的含量,当Ni2+浓度低于设定值时,自动补药器开始添加一定数量的药水来弥补所消耗的Ni2+,而其它组分则依据Ni2+添补量按比例同时添加.

镍层的厚度与镀镍时间呈线性关系.一般情况下,200μ"镍层厚度需镀镍时间28min,150μ"镍层XX需镀镍时间21min左右.由于不同的制板所需的活性不同,为减轻镍缸控制的压力(即增大镍缸各参数的控制范围),可以考虑采用不同的活化时间,例如正常生产Pd缸有一个时间,容易渗镀的制板另设定活化时间.这样一来,则可以组合成六个程序来进行生产.需要留意的是,对于多程序生产,应当遵循一个基本原则,就是所有程序飞巴的起始位置必须保持一致,否则连续生产中切换程序容易造成过多的麻烦.

镍缸的循环量一般设计在5~10turnover(每小时),布袋式过滤应优先选择考虑.摇摆通常都是前后摆动设计,但对于laser盲孔板,镍缸和金缸设计为上下振动为佳.

3.2.6沉金缸

置换反应形式的浸金薄层,通常30分钟可达到极限厚度.由于镀液Au的含量很低,一般为1~2g/L,溶液的扩散速度影响到大面积Pad位与小面积Pad位沉积厚度的差异.一般来说,独立位小Pad位要比大面积Pad位的金厚度高100%也属正常现象.

对于PCB的沉金,其金面厚度也会因内层分布而相互影响,其个别Pad位也会出较大的差异.

通常情况下,沉金缸的浸镀时间设定在7~11分钟,操作温度一般在80~90℃,可以根据客户的金厚要求,通过调节温度来控制金厚.需要留意的是,金缸容积越大越好,不但其Au浓度变化小而有利于金厚控制,而且可以延长换缸周期.

为了节省成本,金缸之后需加装回收水洗,同时也可减轻对环境的污染.回收缸之后,一般都是逆流水洗.

四、关于生产线的设计

4.1沉镍金自动线

4.1.1排缸

从生产线的角度来看,排缸数量越少越好,一方面可以减少不必要的天车运行距离和时间,另一方面,还可以节省投资成本以及占地空间.

关于排缸的顺序,一般情况应从产能、滴水污染、天车运行及操作方便等几个因素来考虑.镍缸由于保养费时,所以应当排放一备用缸.

对于每天大约3KSF产能的生产线,设计一台天车则可以满足生产,建议排缸顺序如下:

(1)上下料、

(2)(3)(4)三级逆流水洗、(5)回收、(6)金缸、(7)(8)二级逆流水洗、(9)(10)双架位镍缸、(11)(12)备用双架位镍缸、(13)(14)二级逆流水洗、(15)活化缸、(16)预浸缸、(17)(18)二级逆流水洗、(19)酸洗缸、(20)(21)二级逆流水洗、(22)微蚀缸、(23)(24)(25)三级逆流水洗、(26)除油缸

对于每天大约4.5KSF产能的生产线,需设计两台天车来满足生产需求,建议排缸顺序如下:

(1)上下料、

(2)(3)(4)三级逆流水洗、(5)回收、(6)(7)双架位金缸、(8)(9)二级逆流水洗、(10)(11)(12)三架位镍缸、(13)(14)(15)备用三架位镍缸、(16)除油缸、(17)(18)(19)三级逆流水洗、(20)微蚀缸、(21)(22)二级逆流水洗、(23)酸洗缸、(24)(25)二级逆流水洗、(26)预浸缸、(27)活化缸、(28)(29)二级逆流水洗

对于每天大约6KSF的生产数,只需将三架位镍缸改为四架位镍缸即可.

对于更大产能的生产线,则应考虑将缸的宽度和深度以及长度加大,以提高每架板的挂板数量.

4.1.2挂板设计

关于挂窗尺寸,一般考虑最大板横挂.如18"×24"板则将24"边打横挂入,否则药水在板面滑落时间比横挂增加30%以上.因此,镍缸的有效宽度和有效深度一般为26"×21"左右,其它缸则参考镍缸的挂板空间.

这样的设计,可以避免镍缸太深而导致药水交换不佳等问题.同时小尺寸生产则可以挂两排,以增加产量和弥补镍缸负载的不足.

关于挂具的设计,应最大限度减少挂具在药液中浸泡的面积,降低药水带出以及挂具上沉积镍金的问题.同时,硝挂具一般采用王水,其操作的困难度较大,所以也应考虑保养的方便.

建议使用PP夹板,每个挂具挂板15~20块,每块隔板的厚度以10mm为佳.顶部以316不锈钢定夹板,下边以铁弗龙包胶U型相框来固定挂板.

4.1.3缸体材质

由于镍缸和金缸操作温度在80~90℃,所以缸体不但须耐高温,而且须不易渗漏.所以一般使用316不锈钢做镍缸,缸壁最好采用镜面抛光.金缸一般使用耐热PP或不锈钢内衬铁弗龙.其它缸采用普通PP材质即可.

对于镍缸,如果仅生产单双面板,也可考虑使用耐热PP材质.但对于盲孔板,由于布线复杂,沉镍金生产过程中,线路间有可能出现相互影响而易产生漏镀,所以镍缸操作比单、双面板要高出5℃左右,甚至达到90℃以上.对采用PP材质的镍缸,不可避免产生大量的镍沉积在缸底,给操作带来很多问题.所以,镍缸及其缸内附件,包括加热和打气系统,如果使用不锈钢材质,则能够通过正电保护抑制上镍,不但使用镍缸操作变得容易,而且在成本方面避免不必要的浪费.

4.1.4程序

沉镍金生产,往往不可能只有一两种制板生产.由于每一种制板都有可能需要不同的活性,所以沉镍金生产线,最好有四个以上的程序段,来满足不同的生产需求.

4.2前后处理设备

4.2.1前处理

由于沉镍金生产中"金面颜色不良"问题,通过调整系统活性以及加强微蚀速度等方式,虽然有时会凑效,但常常既费时又费力,而且这些措施很不安全,稍不注意就产生另一种报废.所以,在有条件的情况下,另设计一条水平线作为前处理,通过增加制程来拓宽沉镍金参数范围的控制.

磨刷→水洗→微蚀→水洗→干板

磨刷:

通常采用500-1000#尼龙刷辘,在喷水装态下清洁铜面,以除去绿油工序残留的药液以及轻度的冲板不净剩余残渣.如果绿油工序制程稳定,或出现问题的可能性很小,则磨刷这个制程不需要设计.

微蚀:

通常使用80-120g/L的过硫酸钠与5%的硫酸配制槽液,通过调节温度,使微蚀率控制在1μm左右,它的作用是清洁铜面.去除前工序(主要指绿油)残留在板面的药水渍或严重氧化等铜面杂物,防止沉镍金出现由前工序引起的甩镍、金面颜色不良、渗镀等问题.

需要注意的是,前处理若使用了水平微蚀剂,沉镍金制程中的微蚀缸仍需保留,但微蚀率达到0.5μm即可,否则易造成铜厚不足的问题.

4.2.2后处理

由于沉镍金表面正常情况下光洁度和平整度很好,所以轻微的金面氧化或水渍都会使金面颜色变得很难看.而沉镍金生产线纵然控制到最佳,也只能杜绝金面氧化,对于烘干缸因水珠而遗留的水渍实在是无能为力.

高压水洗机不但可以有效地清洗板面残留药水,防止金面氧化,而且干板过程有风力将水珠吹走,完全避免残留水珠而造成的水渍问题.

也有人在高压水洗机前加一段2%的酸洗段,以洗去因金缸后造成的金面氧化.这也是事后补救的一种可取的方法.因为金面残留的药水在短短的水洗过程中造成金面氧化,那说明它对金面的攻击作用是远远大于2%的盐酸或硫酸,而且水平酸洗过程也不足十秒,之后又有高压水洗和干板,其对于镍金面的影响应该可以忽略不计.但是,有的客户明确提出而且强烈反对沉金板酸洗,那也是没有办法的事,客户是上帝,他不喜欢的事最好别做.

4.3循环过滤泵、加热及打气装置

4.3.1循环过滤泵

为保持槽液有一定的循环效果,除油、微蚀、活化、沉镍、沉金各缸都需要加装循环泵,除镍缸之外以上各缸还需加装过滤器,通过5μm滤芯来过滤槽液.

对于镍缸其循环不但要求均匀,有利于药液扩散和温度扩散,而且不能流速太快而影响化学镍的沉积,通常其循环量6-7turnover为佳.同时镍缸还需过滤,以除去槽液中杂物.由于棉芯容易上镍,所以应首先考虑布袋式过滤系统.关于镍缸的溢流问题,由主缸流入副缸,更有利于药水扩散和温度平衡.

4.3.2加热装置

除油、微蚀、活化、沉镍、沉金各缸都需要加热系统,除镍金之外,均可使用石英或铁弗龙加热器.对于镍缸,最好采用不锈钢加热交换管,且须外接下电保护.因为自动补药器是在副缸加药,所以须留意加药口不可正对副缸中的加热器.

4.3.3打气装置

微蚀和镍缸的主副槽以及各水洗缸都应加装打气系统.生产时通常是除油后第一道水洗、镍缸主槽、及镍缸后水洗处于打气关闭状态.对于镍缸,每一根加热管下方都应该保持强力打气状态.

4.4接口设备

沉镍金生产线的周边附属设施中,首先需要的是DI水机,各药水缸配槽以及活化、沉镍、金回收之后的水洗缸,都需要使用DI水.有的厂采用中央DI水处理,半管道接入沉金线,那则是最理想的设计.

在生产过程中,由于活化缸和微蚀缸对温度要求很严格,所以应当购置冷水机来控制槽液温度.对于镍缸,有的人嫌降温过程太慢(由操作温度降至50℃以下),将冷水管(临时管道)接入镍缸,这也是充分利用现有资源的好方法.

由于镍缸硝槽时使用硝酸数量较大,而且不便重复利用,所以,在镍缸底部连接一备用硝酸槽,通过一个抽水马达(须耐硝酸)以及换向阀,将硝酸抽到所需的槽中.须留意的是,管理槽(贮存硝酸)的容积要大于镍缸20-50%.

沉镍金周边设施除DI水机、冷水机及管理槽,还须将生产线污浊空气抽出,送往化气塔净化.同时,生产线最好也加装送风装置,以保持操作环境的空气新鲜.

五、工序常见缺陷分析

5.1漏镀

5.1.1主要原因

体系活性(镍缸及钯缸)相对不足;铅、锡等铅面污染.

5.1.2问题分析

漏镀的成因在于镍缸活性不能满足Pad位的反应势能,导致沉镍化学反应中途停止,或者根本未沉积金属镍.

漏镀的特点是:

如果一个Pad位漏镀,与其相连的所有Pad位都漏镀.出现漏镀问题,首先须区分是否由外界污染板面所致.若是,将该板进行水平微蚀或采用磨板方式除去污染.

影响体系活性的最主要因素是镍缸稳定剂浓度,但由于难以操作控制,一般不采取降低稳定剂浓度来解决该问题.

影响体系活性的主要因素是镍缸温度.升高镍缸温度,一定有利于漏镀的改善.如果不考虑外部环境以及内部稳定性,无限度的升高镍缸温度,应该能解决漏镀问题.

影响体系活性的次要因素是活化浓度、温度和时间.延长活化的时间或提高活化浓度和温度,一定有利于漏镀的改善.由于活化的温度和浓度太高会影响钯缸的稳定性,而且会影响其它制板的生产,所以,在这些次要因素中,延长时间是首选改善措施.

镍缸的PH值、次磷酸钠以及镍缸负载,都会影响镍缸的活性,但其影响程度较小;而且过程缓慢.所以不宜作为改善漏镀问题的主要方法.

5.2渗镀

5.2.1主要原因

体系活性太高

外界污染或前工序残渣

5.2.2问题分析

渗镀的主要成因在于镍缸活性过高导致选择性太差,不但使铜面发生化学沉积,同时其它区域(如基材、绿油侧边等)也发生化学沉积,造成不该出现沉积的地方沉积化学镍金.

出现渗镀问题,首先须区分是否由外界污染或残渣(如铜、绿油等)所致.若是,将该板进行水平微蚀或其它的方法去除.

升高稳定剂浓度,是改善体系活性太高的最直接的方法,但是,同漏镀问题改善一样,因难以操作控制而不宜采用.

降低镍缸温度是改善渗镀最有效的方法.理论上,无限度的降低温度,可以彻底解决渗镀问题.

降低钯缸温度和浓度,以及减少钯缸处理时间,可以降低体系活性,有效地改善渗镀问题.

镍缸的PH值、次磷酸钠以及镍缸负载,降低其控制范围有利于渗镀的改善,但因其影响较小而且过程缓慢,不宜作为改善渗镀问题的主要方法.

因操作不当导致钯缸或镍缸产生悬浮颗粒弥漫槽液,则应采取过滤或更新槽液来解决.

5.3甩金

5.3.1主要原因

镍缸后(沉金前)造成镍面钝化

镍缸或金缸杂质太多

5.3.2问题分析

金层同镍层发生分离,说明镍层同金层的结合力很差,镍面出现异常而造成甩金.

镍面出现钝化,是造成甩金出现的最主要因素.沉镍后在空气中暴露时间过长和水洗时间过长,都会造成镍面钝化而导致结合力不良,当然,水洗的水质出现异常,也有可能导致镍层钝化.

至于镍缸或金缸是否为甩金出现的主要原因,可在实验室烧杯中做对比实验来确定,若是,则更换槽液.

5.4甩镍

5.4.1主要原因

铜面不洁或活化后钯层表面钝化

镍缸中加速剂失衡

5.4.2问题分析

镍缸以前制程不良或不能除去铜面杂物(包括绿油残渣),镍层与铜面结合力就会受到影响,从而就导致甩镍.

出现甩镍问题,首先须检查做板过程中板面状况,区分铜面杂物还是活化后钯层表面钝化,若是后者,则追踪是否活化后空气中太长还是水洗时间太长.

如果铜面杂物引起甩镍,则检查前处理水平微蚀是否正常,同时须检查前处理之前铜面是否异常.另外,前处理中硫脲药液残留铜面,轻则出现沉镍金颜色粗糙,重则甩镍.

镍缸中加速剂(如Na2S2O3)太多则会导致镍沉积松散,造成镍层剥落.此时多伴随镍面哑色出现(失去光泽).出现这种情况,用拖缸板(镍板)消耗掉多余加速剂,即可重新进行生产.

5.5非导通孔上金

5.5.1主要原因

直接电镀或化学沉铜残留的钯太多

镍缸活性太高

5.5.2问题分析

由于直接电镀导体吸附的Pd层很厚,在沉镍金工序之间,必须用"催化剂中毒

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 工学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1