longchain alcohols and longchain fatty acids.docx

上传人:b****6 文档编号:6184302 上传时间:2023-01-04 格式:DOCX 页数:58 大小:42.47KB
下载 相关 举报
longchain alcohols and longchain fatty acids.docx_第1页
第1页 / 共58页
longchain alcohols and longchain fatty acids.docx_第2页
第2页 / 共58页
longchain alcohols and longchain fatty acids.docx_第3页
第3页 / 共58页
longchain alcohols and longchain fatty acids.docx_第4页
第4页 / 共58页
longchain alcohols and longchain fatty acids.docx_第5页
第5页 / 共58页
点击查看更多>>
下载资源
资源描述

longchain alcohols and longchain fatty acids.docx

《longchain alcohols and longchain fatty acids.docx》由会员分享,可在线阅读,更多相关《longchain alcohols and longchain fatty acids.docx(58页珍藏版)》请在冰豆网上搜索。

longchain alcohols and longchain fatty acids.docx

longchainalcoholsandlongchainfattyacids

designofdualmodelinguistichedgefuzzylogiccontrollerforanisolatedwind–dieselhybridpowersystemwithsuperconductingmagneticenergystorageunitisproposedinthispaper.Thedesignmethodologyofdualmodelinguistichedgefuzzylogiccontrollerisahybridmodelbasedontheconceptsoflinguistichedgesandhybridgeneticalgorithm-simulatedannealingalgorithms.Thelinguistichedgeoperatorsareusedtoadjusttheshapeofthesystemmembershipfunctionsdynamicallyandcanspeedupthecontrolresulttofitthesystemdemand.Thehybridgeneticalgorithm–simulatedannealingalgorithmisadoptedtosearchtheoptimallinguistichedgecombinationinthelinguistichedgemodule.Dualmodeconceptisalsoincorporatedintheproposedcontrollerbecauseitcanimprovethesystemperformance.Thesystemwiththeproposedcontrollerwassimulatedandthefrequencydeviationresultingfromasteploaddisturbanceispresented.Thecomparisonoftheproportionalplusintegralcontroller,fuzzylogiccontrollerandtheproposeddualmodelinguistichedgefuzzylogiccontrollershowsthat,withtheapplicationoftheproposedcontroller,thesystemperformanceisimprovedsignificantly.Theproposedcontrollerisalsofoundtobelesssensitivetothechangesintheparametersofthesystemandalsorobustunderdifferentoperatingmodesofthehybridpowersystem.

ArticleOutline

Nomenclature

1.Introduction

2.Developmentofmathematicalmodelofanisolatedwind–dieselhybridpowersystemwithSMESunit

2.1.Transferfunctionmodel

2.2.Continuous-timedynamicmodel

2.2.1.ModelofisolatedwindpowersysteminthehybridpowersystemwithSMESunit

2.2.2.ModelofdieselpowersysteminthehybridpowersystemwithSMESunit

2.2.3.ModeloftheSMESunitinthehybridpowersystem

2.2.4.Determinationofthecontinuous–timestatespacemodel

3.Outputfeedbackcontrolscheme

4.Designofproposeddualmodelinguistichedgefuzzylogiccontrollerwithoutputfeedback

5.Applicationofproposeddualmodelinguistichedgefuzzylogiccontrollerforanisolatedwind–dieselhybridpowersystemwithSMESunit

5.1.Developmentofmathematicalmodel

5.2.DesignofconventionalPIcontrollerandFLCwithoutputfeedback

5.3.DesignofproposedDMLHFLCwithoutputfeedback

5.4.Determinationofoptimallinguistichedgecombination

5.5.Simulationresultsandobservations

5.6.Performanceanalysisoftheproposedcontrollerunderparametervariation

5.7.PerformanceanalysisoftheproposedcontrollerundervariousoperatingmodesofthehybridpowersystemwithSMESunit

5.7.1.wind–dieselhybridpowersystemmode

5.7.2.WindpowersystemwithSMESunitmode

5.7.3.Windstandalonepowersystemmode

6.Conclusions

Acknowledgements

AppendixA.Appendix

A.1.Systemparameters

A.2.SMESunitdata

References

Purchase

58

Theeffectofactuatordynamicsonactivestructuralcontrolofoffshorewindturbines  OriginalResearchArticle

EngineeringStructures,Volume33,Issue5,May2011,Pages1807-1816

GordonM.Stewart,MatthewA.Lackner

 Closepreview  |  Relatedarticles  |  Relatedreferenceworkarticles    

AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences

Abstract

Whenimplementingactivestructuralcontrolinlargescalewindturbines,caremustbetakentoaccuratelymodelthedynamicsoftheactuatorinordertodeveloparobustcontrolsystem.Inthispaper,alimiteddegreeoffreedommodelisconstructed,andtheeffectsofbothactuatordynamicsandcontrol-structureinteractionareinvestigatedforanelectricmotor.Themodelisanalyzedinthefrequencydomaininordertohighlighttheseeffects.Theperformanceoftheactivecontrolmodelconsideringactuatordynamicsiscomparedtopreviousworkinwhichanidealactuatorwasused.Itisdemonstratedthatwhileloadingisreducedforcasesthatincludeamorerealisticactuatormodel,greatlyincreasedactuatorpowerconsumptionmakesneglectingcontrol-structureinteractionincontrollerdesignundesirable.Finally,theimpactofthemechanicaldesignoftheactuatoroncontrol-structureinteractionisanalyzed.Itisshownthatbychangingthegearratiooftheactuator,theeffectsofcontrol-structureinteractioncanbereduced.

ArticleOutline

1.Introduction

1.1.Previouswork

1.1.1.Structuralcontrol

1.1.2.Hybridmassdamperforoffshorewindturbines

1.1.3.Control-structureinteraction

1.2.Overviewofresearch

2.Simulationtoolsandmodels

3.Limiteddegree-of-freedommodel

4.Frequencydomainanalysis

4.1.EffectofgearratioonCSI

5.FAST-SCsimulation

5.1.Pseudo-passiveanalysis

5.2.HMDanlysis

6.Conclusionsandfuturework

Acknowledgements

Appendix.Appendix

References

Purchase

59

TheALICETPC,alarge3-dimensionaltrackingdevicewithfastreadoutforultra-highmultiplicityevents  

NuclearInstrumentsandMethodsinPhysicsResearchSectionA:

Accelerators,Spectrometers,DetectorsandAssociatedEquipment,Volume622,Issue1,1October2010,Pages316-367

J.Alme,Y.Andres,H.Appelshäuser,S.Bablok,N.Bialas,R.Bolgen,U.Bonnes,R.Bramm,P.Braun-Munzinger,R.Campagnolo,P.Christiansen,A.Dobrin,C.Engster,D.Fehlker,Y.Foka,U.Frankenfeld,J.J.Gaardhøje,C.Garabatos,P.Glässel,C.GonzalezGutierrez,etal.

 Closepreview  |  

PDF(8818K)  |  Relatedarticles  |  Relatedreferenceworkarticles SponsoredArticle    

AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences

Abstract

Thedesign,construction,andcommissioningoftheALICETime-ProjectionChamber(TPC)isdescribed.Itisthemaindeviceforpatternrecognition,tracking,andidentificationofchargedparticlesintheALICEexperimentattheCERNLHC.TheTPCiscylindricalinshapewithavolumecloseto90 m3andisoperatedina0.5 Tsolenoidalmagneticfieldparalleltoitsaxis.

InthispaperwedescribeindetailthedesignconsiderationsforthisdetectorforoperationintheextrememultiplicityenvironmentofcentralPb–PbcollisionsatLHCenergy.Theimplementationoftheresultingrequirementsintohardware(fieldcage,read-outchambers,electronics),infrastructure(gasandcoolingsystem,laser-calibrationsystem),andsoftwareledtomanytechnicalinnovationswhicharedescribedalongwithapresentationofallthemajorcomponentsofthedetector,ascurrentlyrealized.Wealsoreportontheperformanceachievedaftercompletionofthefirstroundofstand-alonecalibrationrunsanddemonstrateresultsclosetothosespecifiedintheTPCTechnicalDesignReport.

ArticleOutline

1.Introduction

2.Fieldcage

2.1.Vessels

2.2.Centralelectrode

2.3.Rods

2.3.1.Resistorrods

2.3.2.High-voltagecablerod

2.3.3.Laserrods

2.3.4.Gasrods

2.4.Strips

2.5.Skirts

2.6.Endplates

2.7.I-bars

3.Readoutchambers

3.1.Designconsiderations

3.2.Mechanicalstructure

3.2.1.Wires

3.2.2.Wireplanes

3.2.3.Anode-wiregrid

3.2.4.Cathode-wiregrid

3.2.5.Gating-wiregrid

3.2.6.Coverandedgegeometry

3.2.7.Padplane,connectorsandflexiblecables

3.2.8.Padplanecapacitancemeasurements

3.2.9.Al-body

3.3.Testswithprototypechambers

3.3.1.Descriptionofproductionsteps

3.3.2.Qualityassuranceandtests

3.4.Chambermountingandpre-commissioning

4.Front-endelectronicsandreadout

4.1.Generalspecifications

4.1.1.Systemoverview

4.2.PASA

4.3.ALTRO

4.3.1.Circuitdescription

4.3.2.Physicalimplementation

4.4.Front-endcard(FEC)

4.4.1.Circuitdescription

4.4.2.Physicalimplementation

4.5.RCU

4.5.1.RCUmotherboard

4.5.2.DCSboard

4.6.Triggersubsystem

4.7.Radiationtolerance

4.7.1.SEU

4.7.2.SEL

4.8.Testingprocedure

5.Coolingandtemperaturestabilizationsystem

5.1.Overview

5.2.Thenecessityforuniformtemperatures

5.2.1.Heatloadandcomputationalfluiddynamicscalculations

5.3.Principleofunderpressurecooling

5.4.TPCcoolingplants

5.4.1.Coolingcircuits

5.5.Coolingstrategy

5.6.Commissioningofthecoolingsystem

5.6.1.Testwithmock-upsectors

5.6.2.Startupproceduresandoperation

5.6.3.Cavitationproblem

5.7.Temperaturemonitoringsystem

5.7.1.Temperatureprofileandhomogenization

6.Gasandgassystem

6.1.Gaschoice

6.1.1.Implicationsofthegaschoice

6.2.Descriptionofthegassystem

6.2.1.Configuration

6.2.2.On-detectordistribution

6.2.3.Filling

6.2.4.Running

6.2.5.Back-upsystem

6.2.6.Analysis

7.Lasersystem

7.1.Requirements

7.2.Systemoverview

7.3.Opticalsystem

7.3.1.UVlasers

7.3.2.Laserbeamtransportsystem

7.3.3.Micromirrorsandlaserrods

7.4.Laserbeamcharacteristicsandalignment

7.4.1.Narrowbeamcharacteristics

7.4.2.Narrowbeamlayout

7.4.3.Spatialprecisionandstability

7.4.4.Constructionandsurveys

7.4.5.Onlineandofflinealignment

7.5.Operationalaspects

7.5.1.Beammonitoringandsteering

7.5.2.Triggerandsynchronization

8.Infrastructureandservices

8.1.MovingtheTPC

8.2.Servicesupportwheel

8.3.Low-voltagedistribution

8.4.ChamberHVsystem

8.5.Gatepulser

8.6.Calibrationpulser

9.Detectorcontrolsystem(DCS)

9.1.Overview

9.1.1.Hardwarearchitecture

9.1.2.Softwarearchitecture

9.1.3.Systemimplementation

9.1.4.Interfacestodevices

9.1.5.Interlock

9.2.Electronicscontrol

9.2.1.Front-endmonitoring

9.2.2.Front-endconfigurationandcontrol

9.3.Interfacestoexperimentcontrolandoffline

10.Commissioningandcalibration

10.1.Calibrationrequirements

10.2.Commissioning

10.2.1.Commissioningphases

10.2.2.Datasets

10.3.Electronicscalibration

10.3.1.Pedestalandnoisedetermination

10.3.2.Tail-cancellationfilterparameterextraction

10.4.Ga

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1