ImageVerifierCode 换一换
格式:DOCX , 页数:58 ,大小:42.47KB ,
资源ID:6184302      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6184302.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(longchain alcohols and longchain fatty acids.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

longchain alcohols and longchain fatty acids.docx

1、longchain alcohols and longchain fatty acidsdesign of dual mode linguistic hedge fuzzy logic controller for an isolated winddiesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic control

2、ler is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The h

3、ybrid genetic algorithmsimulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller

4、was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed contr

5、oller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.Article OutlineNomenclature1. Introduction2. Development of ma

6、thematical model of an isolated winddiesel hybrid power system with SMES unit 2.1. Transfer function model2.2. Continuous-time dynamic model 2.2.1. Model of isolated wind power system in the hybrid power system with SMES unit2.2.2. Model of diesel power system in the hybrid power system with SMES un

7、it2.2.3. Model of the SMES unit in the hybrid power system2.2.4. Determination of the continuous time state space model3. Output feedback control scheme4. Design of proposed dual mode linguistic hedge fuzzy logic controller with output feedback5. Application of proposed dual mode linguistic hedge fu

8、zzy logic controller for an isolated winddiesel hybrid power system with SMES unit 5.1. Development of mathematical model5.2. Design of conventional PI controller and FLC with output feedback5.3. Design of proposed DMLHFLC with output feedback5.4. Determination of optimal linguistic hedge combinatio

9、n5.5. Simulation results and observations5.6. Performance analysis of the proposed controller under parameter variation5.7. Performance analysis of the proposed controller under various operating modes of the hybrid power system with SMES unit 5.7.1. winddiesel hybrid power system mode5.7.2. Wind po

10、wer system with SMES unit mode5.7.3. Wind stand alone power system mode6. ConclusionsAcknowledgementsAppendix A. AppendixA.1. System parametersA.2. SMES unit dataReferencesPurchase58The effect of actuator dynamics on active structural control of offshore wind turbinesOriginal Research ArticleEnginee

11、ring Structures, Volume 33, Issue 5, May 2011, Pages 1807-1816Gordon M. Stewart, Matthew A. LacknerClose preview| Related articles|Related reference work articles AbstractAbstract | Figures/TablesFigures/Tables | ReferencesReferences AbstractWhen implementing active structural control in large scale

12、 wind turbines, care must be taken to accurately model the dynamics of the actuator in order to develop a robust control system. In this paper, a limited degree of freedom model is constructed, and the effects of both actuator dynamics and control-structure interaction are investigated for an electr

13、ic motor. The model is analyzed in the frequency domain in order to highlight these effects. The performance of the active control model considering actuator dynamics is compared to previous work in which an ideal actuator was used. It is demonstrated that while loading is reduced for cases that inc

14、lude a more realistic actuator model, greatly increased actuator power consumption makes neglecting control-structure interaction in controller design undesirable. Finally, the impact of the mechanical design of the actuator on control-structure interaction is analyzed. It is shown that by changing

15、the gear ratio of the actuator, the effects of control-structure interaction can be reduced.Article Outline1. Introduction 1.1. Previous work 1.1.1. Structural control1.1.2. Hybrid mass damper for offshore wind turbines1.1.3. Control-structure interaction1.2. Overview of research2. Simulation tools

16、and models3. Limited degree-of-freedom model4. Frequency domain analysis 4.1. Effect of gear ratio on CSI5. FAST-SC simulation 5.1. Pseudo-passive analysis5.2. HMD anlysis6. Conclusions and future workAcknowledgementsAppendix. AppendixReferencesPurchase59The ALICE TPC, a large 3-dimensional tracking

17、 device with fast readout for ultra-high multiplicity eventsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 622, Issue 1, 1 October 2010, Pages 316-367J. Alme, Y. Andres, H. Appelshuser, S. Bablok, N. Bialas, R. B

18、olgen, U. Bonnes, R. Bramm, P. Braun-Munzinger, R. Campagnolo, P. Christiansen, A. Dobrin, C. Engster, D. Fehlker, Y. Foka, U. Frankenfeld, J.J. Gaardhje, C. Garabatos, P. Glssel, C. Gonzalez Gutierrez, et al.Close preview| PDF (8818 K) | Related articles|Related reference work articlesSponsored Art

19、icle AbstractAbstract | Figures/TablesFigures/Tables | ReferencesReferences AbstractThe design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE exper

20、iment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90m3 and is operated in a 0.5T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of centra

21、l PbPb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentatio

22、n of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Article Outline1. Introduction2. Fi

23、eld cage 2.1. Vessels2.2. Central electrode2.3. Rods 2.3.1. Resistor rods2.3.2. High-voltage cable rod2.3.3. Laser rods2.3.4. Gas rods2.4. Strips2.5. Skirts2.6. Endplates2.7. I-bars3. Readout chambers 3.1. Design considerations3.2. Mechanical structure 3.2.1. Wires3.2.2. Wire planes3.2.3. Anode-wire

24、 grid3.2.4. Cathode-wire grid3.2.5. Gating-wire grid3.2.6. Cover and edge geometry3.2.7. Pad plane, connectors and flexible cables3.2.8. Pad plane capacitance measurements3.2.9. Al-body3.3. Tests with prototype chambers 3.3.1. Description of production steps3.3.2. Quality assurance and tests3.4. Cha

25、mber mounting and pre-commissioning4. Front-end electronics and readout 4.1. General specifications 4.1.1. System overview4.2. PASA4.3. ALTRO 4.3.1. Circuit description4.3.2. Physical implementation4.4. Front-end card (FEC) 4.4.1. Circuit description4.4.2. Physical implementation4.5. RCU 4.5.1. RCU

26、motherboard4.5.2. DCS board4.6. Trigger subsystem4.7. Radiation tolerance 4.7.1. SEU4.7.2. SEL4.8. Testing procedure5. Cooling and temperature stabilization system 5.1. Overview5.2. The necessity for uniform temperatures 5.2.1. Heat load and computational fluid dynamics calculations5.3. Principle of

27、 underpressure cooling5.4. TPC cooling plants 5.4.1. Cooling circuits5.5. Cooling strategy5.6. Commissioning of the cooling system 5.6.1. Test with mock-up sectors5.6.2. Startup procedures and operation5.6.3. Cavitation problem5.7. Temperature monitoring system 5.7.1. Temperature profile and homogen

28、ization6. Gas and gas system 6.1. Gas choice 6.1.1. Implications of the gas choice6.2. Description of the gas system 6.2.1. Configuration6.2.2. On-detector distribution6.2.3. Filling6.2.4. Running6.2.5. Back-up system6.2.6. Analysis7. Laser system 7.1. Requirements7.2. System overview7.3. Optical sy

29、stem 7.3.1. UV lasers7.3.2. Laser beam transport system7.3.3. Micromirrors and laser rods7.4. Laser beam characteristics and alignment 7.4.1. Narrow beam characteristics7.4.2. Narrow beam layout7.4.3. Spatial precision and stability7.4.4. Construction and surveys7.4.5. Online and offline alignment7.

30、5. Operational aspects 7.5.1. Beam monitoring and steering7.5.2. Trigger and synchronization8. Infrastructure and services 8.1. Moving the TPC8.2. Service support wheel8.3. Low-voltage distribution8.4. Chamber HV system8.5. Gate pulser8.6. Calibration pulser9. Detector control system (DCS) 9.1. Over

31、view 9.1.1. Hardware architecture9.1.2. Software architecture9.1.3. System implementation9.1.4. Interfaces to devices9.1.5. Interlock9.2. Electronics control 9.2.1. Front-end monitoring9.2.2. Front-end configuration and control9.3. Interfaces to experiment control and offline10. Commissioning and calibration 10.1. Calibration requirements10.2. Commissioning 10.2.1. Commissioning phases10.2.2. Data sets10.3. Electronics calibration 10.3.1. Pedestal and noise determination10.3.2. Tail-cancellation filter parameter extraction10.4. Ga

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1