几种常用煤气化技术的优缺点.docx

上传人:b****5 文档编号:4387949 上传时间:2022-12-01 格式:DOCX 页数:16 大小:82.32KB
下载 相关 举报
几种常用煤气化技术的优缺点.docx_第1页
第1页 / 共16页
几种常用煤气化技术的优缺点.docx_第2页
第2页 / 共16页
几种常用煤气化技术的优缺点.docx_第3页
第3页 / 共16页
几种常用煤气化技术的优缺点.docx_第4页
第4页 / 共16页
几种常用煤气化技术的优缺点.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

几种常用煤气化技术的优缺点.docx

《几种常用煤气化技术的优缺点.docx》由会员分享,可在线阅读,更多相关《几种常用煤气化技术的优缺点.docx(16页珍藏版)》请在冰豆网上搜索。

几种常用煤气化技术的优缺点.docx

几种常用煤气化技术的优缺点

几种煤气化技术介绍

煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:

传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。

一Texaco水煤浆加压气化技术

德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。

b5E2RGbCAP

Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:

将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。

p1EanqFDPw

其优点如下:

<1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在4.0MPa和6.5Mpa。

在较高气化压力下,可以降低合成气压缩能耗。

DXDiTa9E3d

<2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。

便于气化炉的负荷调节,使装置具有较大的操作弹性。

RTCrpUDGiT

<3)工艺技术成熟可靠,设备国产化率高。

同等生产规模,装置投资少。

该技术的缺点是:

<1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。

对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。

而且,煤种的选择面也受到了限制,不能实现原料采购本地化。

5PCzVD7HxA

<2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。

无形中就增加了建设投资。

jLBHrnAILg

<3)一般一年至一年半更换一次炉内耐火砖。

二多喷嘴对置式水煤浆加压气化技术

该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。

目前在山东德州和鲁南均有工业化装置成功运行。

xHAQX74J0X

该技术的水煤浆气化压力为3.0~6.5MPa,温度为~1300℃。

技术特点:

多喷嘴对置的水煤浆气流床气化炉及复合床煤气洗涤冷却设备;分级净化的煤气初步净化工艺;蒸发分离直接换热式含渣水处理及热回收工艺。

LDAYtRyKfE

 

<1)多喷嘴对置式气化及煤气初步净化

煤浆经隔膜泵加热,通过四个对称布置在气化炉气化室中上部同一水平面的工艺喷嘴,与氧气一起对喷进入气化炉,对置气化炉的流场结构由射流区、撞击区、撞击流股、回流区、折返流区和管流区组成。

Zzz6ZB2Ltk

煤浆颗粒在气化炉内的气化过程经历了以下步骤:

颗粒的湍流弥散、颗粒的振荡运动、颗粒的对流加热、颗粒的辐射加热、煤浆蒸发与颗粒中挥发份的析出、挥发产物的气相反应、煤焦的多相反应、灰渣的形成等。

dvzfvkwMI1

气化反应是串并联反应同时存在的极为复杂的反应体系,可分为一次反应与二次反应。

出气化室的夹带熔融态灰渣的高温合成气,在复合床结构的洗涤冷却室内完成合成气的洗涤冷却和熔渣的初步分离。

rqyn14ZNXI

采用混合器、旋风分离器和水洗塔相结合的节能高效煤气初步净化系统,使煤气中灰、渣的含量降到最低,并且减少压力损失。

EmxvxOtOco

<2)含渣水处理

气化炉及煤气初步净化系统来的含渣水分别减压后导入含渣水处理系统,含渣水首长进入蒸发热水塔蒸发室,蒸发室内含渣水大量汽化,溶解在水中的酸性气体一起解吸,蒸发室产生的蒸汽进入热水室与循环灰水直接接触,使灰水得到最大程度升温。

蒸发室底部含固量得到增浓的液相产物再进行真空闪蒸,进一步降低含渣水温度和浓缩含渣水的含固量,将酸性气体完全解吸SixE2yXPq5

该技术的主要优点如下:

<1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在4.0MPa和6.5MPa。

在较高的气化压力下,可以降低合成气压缩的能耗。

6ewMyirQFL

<2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。

便于气化炉的负荷调节,使装置具有较大的操作弹性。

kavU42VRUs

<3)工艺技术成熟可靠,设备国产化率高。

同等生产规模下,装置投资低于Texaco技术。

该技术的缺点是:

<1)为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1450℃。

对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。

y6v3ALoS89

<2)由于拱顶高度不够,拱顶砖的使用寿命只有6500小时,还有待于进一步改进。

三多元料浆加压气化工艺

多元料浆加压气化工艺

该技术以其独有的先进性、适用性和成熟的工业应用业绩,打破了国外公司在大型煤气化技术上的垄断。

该技术的工业化推广,将为推动我国能源结构调整和相关产业的发展发挥重要作用。

M2ub6vSTnP

多元料浆新型气化技术属湿法气流床加压气化技术,是指对固体或液体含碳物质<包括煤/石油焦/沥青/油/煤液化残渣)与流动相<水、废液、废水)通过添加助剂<分散剂、稳定剂、PH值调节剂、湿润剂、乳化剂)所制备的料浆,与氧气进行部分氧化反应,生产CO+H2为主的合成气。

水煤浆加压气化属多元料浆气化的特定型式。

粗合成气通过激冷、洗涤、净化后,用于合成氨、合成甲醇、制氢、合成油品、联合循环发电等。

0YujCfmUCw

1.多元料气化反应原理

C+O2=CO2+409.4

C+CO2=2CO-160.7

C+H2O=CO+H2-117.8

CO+H2O=CO2+H2-92.5

C+H2=CH4+87.4

1/2S2+H2=H2S+82.0

1/2S2+CO=COS+55.8

2.工艺过程

多元料浆气化反应的工艺过程包括料浆制备、加压气化、粗煤气净化、灰渣排放、灰水处理。

工艺流程简图如下:

 

 

3.技术指标

料浆浓度/wt%

60~68.5

料浆表观粘度

500~1000

料浆稳定性(24h析水率>/%

~1.8

碳转化率/%

96~98

有效气体(CO+H2>含量/%

80.6~86.2

冷煤气效率/%

70~75.8

氧耗/m3/1000m3(CO+H2>

357~420

原料消耗/kg/1000m3(CO+H2>

485~620

4.技术特点

<1)原料适应性广,包括煤、石油焦、石油沥青、渣油、煤液化残渣、生物质等含碳物质以及纸浆废液、有机废水等液体废弃物。

eUts8ZQVRd

<2)新型结构的气化炉及独特的激冷器,具有结构简单,操作安全易控的特点,而且有利于热量回收、耐火材料保护及固液分离。

sQsAEJkW5T

<3)富有特色的固态排渣和液态排渣技术,不仅解决了高灰熔点原料的气化难题,而且从技术角度拓宽了原料适用范围。

具体体现为:

GMsIasNXkA

①固态排渣工艺不存在堵炉、拉丝等现象,有利于实现气化炉长周期稳定运行。

②固态排渣因灰渣未形成熔融状态,不会对气化炉耐火材料形成化学侵蚀,耐火材料寿命延长2倍以上,大大降低操作和维护费用。

TIrRGchYzg

③根据不同原料,同一气化炉中,既可采用固态排渣,也可采用液态排渣,扩大了原料范围,提高了操作弹性,且无需增加投资。

7EqZcWLZNX

<4)成熟完善的系统放大技术,解决了不同规模、不同压力等级气化装置的工程化问题。

已工业化装置的压力等级为1.3~7.0MPa,生产规模从年产3万吨合成氨到年产90万吨甲醇,单炉日投料量为150~2000吨。

lzq7IGf02E

<5)通过气化原料的优化组合,既解决了原料成浆性问题,又解决了灰熔点问题,特别是难成浆原料的制浆问题,大大提高料浆的有效组成,降低了气化消耗。

同时,解决了高浓度、高粘度料浆长距离输送的难题。

zvpgeqJ1hk

<6)独具特色的灰水处理技术

<7)设备完全立足于国内,投资少,效益显著。

<8)三废排放少,环境友好,属于洁净气化技术。

<9)通过40余年的开发和完善,多元料浆气化技术形成了完整、系统的专利体系。

四GSP煤气化技术

GSP是一种先进成熟的煤气化技术:

干粉进粒,水冷壁气化反应器,激冷流程,液态排渣。

它的优点是:

原料适应性广,投资省、粗煤气成本较低、工艺运行可靠,兼有Shell与Texaco的优点。

下面就对GSP技术作一概要介绍。

NrpoJac3v1

一、原料来源广,适应性强

从年青的泥、褐煤到年老的无烟煤系列中的所有煤种,灰分>1%的石油焦、油渣、工业污泥等均可作为气化原料。

它对入炉煤或其他原料必须满足粒径、水分、灰分的基本要求。

粒径主要影响碳转化率,水分主要影响煤粉输送,灰分要求1%以上,否则水冷壁无法挂渣形成膜式壁。

各种不同的入炉原料粒径、水分、灰分要求见表1。

1nowfTG4KI

表1各种入炉原料的料径、水分及灰分要求

名称

粒径分布/%

水分/%

灰分/%

泥煤

<100μm≥55

12

>1

<500μm≥99

褐煤

<250μm≥94

8

>1

烟煤

<250μm≥94

2

>1

<500μm100

<250μm≥99

2

>1

<500μm≥100

无烟煤

<63μm≥50~90

2

>1

石油焦

<200μm≥100

二、GSP工艺过程

<1)GSP工艺过程包括:

合格粉煤制备及输送,有低压氮气浓相输送和高压CO2浓相输送系统,通过煤锁斗、压力供料仓、烧嘴喷入气化炉。

fjnFLDa5Zo

<2)粉煤、纯氧、蒸汽<年青煤可以不加)在4MPa、1400℃~1500℃下煤转化成煤气和熔融的渣。

由于原料煤年青,C02供料,水蒸气加入较少,煤气成分中有效气(CO+H2>高达94.5%,C024%,CH40.02%,N20.7%,其他0.78%。

tfnNhnE6e5

<3)高温煤气在激冷室被喷洒的水冷却到220℃,进入文丘里洗涤器,将煤气中尘体积浓度降至lmg/m3(干>,煤气中饱和的水供变换用。

HbmVN777sL

<4)熔渣在激冷室降温固化成粒状落入激冷室下部的水浴中,通过灰锁斗排人渣水槽,用捞渣机将渣捞上皮带送入渣仓,然后用汽车运至处理场。

V7l4jRB8Hs

<5)出冷激室含尘(渣、碳>约0.4%的黑水送到固体物分离器,经初步分离残余碳/尘后的水再经过滤器、贮槽用泵送回冷激室。

分离器下部出来的含尘黑水经减压闪蒸后,在絮凝剂作用下混凝沉淀,再经浓缩、过滤脱水,清水用泵返气化冷激室过滤并送出界外处理。

为保持冷激水中盐类平衡,约占黑水总量15%的废水排出界外处理。

83lcPA59W9

<6)煤粉锁斗功能是将常压下煤粉料供入加压气化系统。

灰锁斗的功能是将压力气化系统的渣水送入常压排渣系统。

它们时刻处在一个由常压到加压,又从加压到常压的周期性交变过程。

煤锁斗充压用C02,灰锁斗充压用水,此过程用可编程序控制器来实现。

mZkklkzaaP

<7)通过锁斗将粉煤供入加压料仓,在此通入的C02与煤粉处于一种密相流化状态,然后通过供料管送至气化炉燃烧喷嘴。

AVktR43bpw

<8)供料仓到气化炉烧嘴的供料管安有原料密度仪,质量流量仪测量煤粉供入量,并与供入的氧气及气化炉、气化室与激冷室压差组成一套控制气化炉操作的调节系统。

ORjBnOwcEd

三、GSP煤气化炉结构特征

GSP气化炉由一个主烧嘴和一个点火烧嘴、气化室、冷激室及承压外壳组成。

气化室内设有水冷壁,水冷壁主要作用是抵抗1450℃~1500℃高温及熔渣的侵蚀,水冷壁系由水冷盘管及固定在盘管上的抓钉与SiC耐火材料共同组成的一个圆筒形膜式壁。

膜壁与承压外壳间有约50mm间隙,间隙间充一小股流动的常温合成气<或C02、N2)。

水冷壁水冷管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产0.5Mpa

2MiJTy0dTT

激冷室为一承压空壳,外径和气化室一样,上部设有若干冷激水喷头。

在此将煤气骤冷至220℃。

煤气由冷激室中部引出。

激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水浴中,排入灰锁斗。

gIiSpiue7A

GSP气化炉除烧嘴为不锈钢和少量特殊不锈钢外,其余全为碳钢材料。

气化炉及其水冷壁寿命10年~20年,烧嘴寿命10年(顶端部一年维修一次>。

uEh0U1Yfmh

四、GSP气化技术指标先进性及原材料动力消耗分析

<1)技术指标

碳转化率:

99.5%;

气化效率:

80%~82%;

气化热效率:

90%<含饱和煤气带入变换的水蒸气)。

<2)原材料及动力消耗<每1000m3

原料煤<收到基、热值Qnet.ar=21351kJ/kg煤):

708kg;

氧<99.6%):

320m3;

蒸汽<4.5MPa,350℃):

17kg~30kg<与煤质有关);

C02<4.5MPa,40℃):

85m3;

电:

55kWh。

五灰熔聚流化床粉煤气化技术

一、灰熔聚流化床粉煤气化技术的基本原理

灰熔聚流化床粉煤气化以碎煤为原料(<6~8mm>,以空气或富氧或氧气为氧化剂,水蒸气或二氧化碳为气化剂,在适当的煤粒度和气速下,使床层中粉煤沸腾,床中物料强烈返混,气固两相充分混合,温度到处均一,在部分燃烧产生的高温<950~1100℃)下进行煤的气化。

煤在床内一次实现破粘、脱挥发份、气化、灰团聚及分离、焦油及酚类的裂解等过程。

IAg9qLsgBX

流化床反应器的混合特性有利于传热、传质及粉状原料的使用,但当应用于煤的气化过程时,受煤的气化反应速率和宽筛分物料气固流态化特性等因素影响,炉内的强烈混合状态导致了炉顶带出飞灰<上吐)和炉底排渣<下泻)中的碳损失较高的缺点。

常规流化床为降低排渣的碳含量,必须保持床层物料的低碳灰比;而在这种高灰床料工况下,为维持稳定的不结渣操作,不得不采用较低的操作温度(<950℃>,这又决定了传统流化床气化炉只适用于高活性的褐煤或次烟煤。

灰熔聚流化床粉煤气化工艺根据射流原理,设计了独特的气体分布器和灰团聚分离装置,中心射流形成床内局部高温区<1200~1300℃),促使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下连续有选择地排出低碳含量的灰渣,提高了床内碳含量和操作温度<达1100℃),从而使其适用煤种拓宽到低活性的烟煤乃至无烟煤。

WwghWvVhPE

二、灰熔聚流化床粉煤气化工艺的特点

<1)煤种适应性广,可实现气化原料本地化。

<2)操作温度适中,无特殊材质要求,操作稳定,连续运转可靠性高。

<3)工艺流程简单,气化炉及配套设备结构简单,造价低,维护费用低。

<4)灰团聚成球,借助重量的差异与半焦有效分离,排灰碳含量低(<10%>。

<5)炉内形成一局部高温区<1200~1300℃),气化强度高。

<6)飞灰经旋风除尘器捕集后返回气化炉,循环转化,碳利用率高。

<7)产品气中不含焦油,洗涤废水含酚量低,净化简单。

<8)设备投资低,气化条件温和,消耗指标低,煤气成本低。

<9)中国自主专利,同等规模下,与引进气化技术相比,投资低50%。

三、灰熔聚流化床粉煤气化工艺流程<图略)

<1)备煤系统

粒径为0~30mm的原料煤(焦>,先筛分、破碎到0~8mm粒度,回转干燥器烘干(烟煤水分<5%,褐煤<12%>待用。

asfpsfpi4k

<2>进料系统

备好的入炉煤经斗式提升机进入煤锁斗系统,由螺旋给料器计量,气力输送进入气化炉下部。

<3)供气系统

气化剂(空气/蒸汽、氧气/蒸汽>分三路计量调节,由分布板、环形管、中心射流管进入气化炉。

<4>气化系统

煤在气化炉中部分燃烧产生的高温<950~1100℃)下与气化剂<氧气、蒸汽)进行反应,一次实现破粘、脱挥发份、气化、灰团聚及分离、焦油及酚类的裂解等过程,生成煤气。

ooeyYZTjj1

<5>除尘系统

高温煤气带出的飞灰,大部分经一级旋风分离器捕集,返回气化炉进一步气化,二级旋风分离器捕集的少量飞灰排出系统。

BkeGuInkxI

<6>废热回收系统及煤气净化系统

除尘后的热煤气依次进入废热锅炉、蒸汽过热器和脱氧水预热器回收热量,再经洗涤塔净化冷却,送至下一工序。

<7>操作控制系统

采用集散型控制系统

PgdO0sRlMo

四、灰熔聚流化床粉煤气化工艺的适用范围

“灰熔聚流化床粉煤气化技术”工业示范成功标志着我国煤气化技术完全依赖进口的时代即将结束,中国科学院山西煤炭化学研究所目前已有能力设计单台处理量100~300吨煤/日的气化炉(0.03~0.5MPa,φ2.4m,配套2~6万吨合成氨/年>。

经大量煤种实验证明对绝大多数煤种的适应性,使得实现原料本地化成为可能,对我国中小氮肥厂改变原料路线,降低生产成本,提供了高效、先进、经济、适用的国产煤气化技术。

通过选择不同的气化剂及其配比可以制取适合工业燃烧和合成化学品等用户不同需求的合成气与工业燃料气。

3cdXwckm15

五、灰熔聚流化床粉煤气化技术的现状与发展方向

灰熔聚流化床粉煤气化技术当前亟待改进的主要问题是:

提高气化炉操作压力,从而提高单台气化炉<φ2400mm)的处理能力。

此外,碳利用率、冷煤气效率和煤气有效成分也有待进一步改善。

h8c52WOngM

六壳牌煤气化

一、Shell煤气化工艺

Shell煤气化工艺(SCGP>以干煤粉为原料、纯氧作为气化剂,液态排渣,属加压气流床气化。

原煤先行破碎研磨成煤粉并经干燥处理,再用氮气送进入贮罐,贮罐内的煤粉与氧气和蒸汽一起,送进气化炉的燃烧器。

上述过程所用的氧气和氮气,均由一套低温空气分离装置产生。

喷入的煤粉、氧气和蒸汽的混合体在3.5~4.0MPa压力下,1400-1700℃的温度范围内发生化学反应。

此操作温度使煤所含的灰份熔化并滴到气化炉底部,变成一种玻璃状不可沥滤的炉渣而排出。

这个温度亦防止形成不合需要的有毒热解副产物,例如苯酚和多环芳香烃。

v4bdyGious

出气化炉的合成气温度1400-1500℃,用循环气体激冷冷却至900℃,然后进入一个合成气冷却器作进一步冷却,同时产生高、中压蒸汽。

J0bm4qMpJ9

从气化炉出来的合成气中所携带的少量灰份颗粒,在一个旋风分离器和陶瓷过滤器中分离除去,再部分循环返回气化炉,以确保碳转化率达到99%以上。

XVauA9grYP

离开气化工序的合成气中含有80-83%的原煤能量,它被称为冷煤气效率。

由气化炉和合成冷却器产生的蒸汽,含有另外的14-16%能量。

相比之下,以水煤浆为原料的气化工艺的冷煤气效率大约为74-77%。

bR9C6TJscw

煤炭中所含的硫、卤素及氮化合物,在气化过程中生成气态的硫化物、卤素、分子态氮、痕量氨及氰化氢。

氰化氢及硫化羰(COS>被催化转化为氨及硫化氢。

卤素和氨经水洗去除。

水洗过的合成气送入后工序变换装置。

pN9LBDdtrd

Shell气化炉为水冷壁型式,内壁布有水冷却管,副产部分蒸汽。

操作时壁内形成一层渣,用“以渣抗渣”方式保护衬里不受侵蚀。

由于不需要耐火砖绝热层,运转周期长,单炉运行,不需要备用炉,可靠性高。

Shell煤气化装置能力大,气化压力为3.5-4.0MPa,单炉处理煤量为2000~2600吨/日。

DJ8T7nHuGT

二、Shell的煤气化对煤质的要求及用煤的处理"

Shell煤气化工艺的原料是干煤粉,用高压氮气输送入气化炉,对煤种的适用范围宽,能够以当地煤种为原料,而且碳转化率超过99%。

该工艺过程对煤的特性,例如煤的粒度、粘结性、含水量、含硫量、含氧量及灰分含量均不敏感,但对于灰熔点较高的煤如灰熔点>1400℃须加入助熔剂(石灰石>,改变溶渣性能。

在荷兰Demkolec工厂工业化装置上已使用过包括澳大利亚煤、哥伦比亚煤、印尼煤、南非煤、美国煤、波兰煤等14个煤种进行气化,均能正常生产。

只要有煤质分析数据,不需进行试烧、认定,即可根据用户提供煤种进行装置设计。

QF81D7bvUA

另外,壳牌气化是干法除尘,无灰水处理系统。

干灰容易处理,对环境有利。

三、Shell煤气化技术特点

1、气化炉结构较简单,内部为膜式水冷壁,无任何耐火砖,烧嘴寿命长,导致气化炉坚固耐用,故气化炉操作可靠4B7a9QFw9h

2、任何煤都可气化,灰熔点高时只需加入助熔剂(石灰石>,干粉进料,气化效率高,氧气消耗低Texaco气化15-25%,原料制备系统较简单,进料灵活。

ix6iFA8xoX

3、高效率,原料煤所含能量之中,大约80-83%以合成气形式回收,另外14-16%以蒸汽形式回收。

蒸汽可以用于驱动空气分离装置的空气压缩机,以及用来发电或作其它用途。

wt6qbkCyDE

4、对称式多烧嘴,混合效果好,转化率高。

5、熔渣气化,熔渣可以保护渣膜水冷壁,并确保产生无毒的废渣及灰。

6、高温气化,碳转化>99%,有效气体成份含量高,CO2含量低,几乎无CH4及酚类、焦油等生成。

7、有利于环保,SCGP工艺的硫氧化物及粉尘排放量实际上为零。

煤的灰份则被转变成一种惰性炉渣,可以用作道路建筑材料。

SCGP装置产生相当少废液排放,这种废液不含有机污染物,工艺用水可循环利用,做到废水的零排放。

%Kp5zH46zRk

六、Shell煤气化炉特点

通过大量的设备开发工作,壳牌确定了气化炉的形状,实际上是膜式水冷壁室的形状。

气化炉包括:

膜式水冷壁室、环形空间和压力外壳容器。

工程设计方面的主要问题是设计膜式水冷室和它在压力壳体中的悬挂问题。

Yl4HdOAA61

<1)膜式水冷壁

Shell在阿姆斯特的实验气化炉内都有耐火衬里,但根据操作经验,Shell认为既使对最先进的耐火砖在高热负荷和熔渣不断侵蚀的环境下难以保证高和长寿命运行。

所以,确定在气化炉的高压壳体中,安装用沸水冷却的膜式水冷壁(以下简称“膜式壁”>。

使工艺过程实际上在膜式壁围成的空腔里发生。

气化压力是由外部的高压壳体随。

中试和示范装置中都装有膜式壁。

在工业化的溶渣锅炉中,膜式壁有广泛的使用经验。

ch4PJx4BlI

膜式壁一方面提高了SCGP的效率,不需额外加入蒸汽,并可副产中、高压蒸汽,同时也增强了工艺操作强度(因为膜式壁设计时,考虑了超过设计条件的情况和操作干扰>,另一方面,膜式壁增加了工程设计的难度、工业化的复杂程度和投资。

工程设计还涉及高温和还原性合成气气氛等因素,所以在设计过程中,膜式壁必须适应这些条件。

同时,还要满足高负荷水/蒸汽系统的要求。

qd3YfhxCzo

<2)环形空间

环形空间位于压力容器和膜式壁之间,设计环形空间是为了容纳水/蒸汽的输出/输入管和集管,另外,环形空间便于检查和维修。

为了上述的要求,在休斯敦的示范装置中,Shell采用装置模型有效地确定了环形空间的尺寸大小。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 小学教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1