第七章弹塑性断裂力学简介_精品文档.ppt

上传人:b****2 文档编号:2569192 上传时间:2022-11-01 格式:PPT 页数:55 大小:866.50KB
下载 相关 举报
第七章弹塑性断裂力学简介_精品文档.ppt_第1页
第1页 / 共55页
第七章弹塑性断裂力学简介_精品文档.ppt_第2页
第2页 / 共55页
第七章弹塑性断裂力学简介_精品文档.ppt_第3页
第3页 / 共55页
第七章弹塑性断裂力学简介_精品文档.ppt_第4页
第4页 / 共55页
第七章弹塑性断裂力学简介_精品文档.ppt_第5页
第5页 / 共55页
点击查看更多>>
下载资源
资源描述

第七章弹塑性断裂力学简介_精品文档.ppt

《第七章弹塑性断裂力学简介_精品文档.ppt》由会员分享,可在线阅读,更多相关《第七章弹塑性断裂力学简介_精品文档.ppt(55页珍藏版)》请在冰豆网上搜索。

第七章弹塑性断裂力学简介_精品文档.ppt

1,第七章弹塑性断裂力学简介,7.1裂纹尖端的小范围屈服,7.2裂纹尖端张开位移,7.3COD测试与弹塑性断裂控制设计,返回主目录,2,用线弹性材料物理模型,按照弹性力学方法,研究含裂纹弹性体内的应力分布,给出描述裂纹尖端应力场强弱的应力强度因子K,并由此建立裂纹扩展的临界条件,处理工程问题。

第七章弹塑性断裂力学简介,线弹性断裂力学(LEFM),线弹性断裂力学给出的裂纹尖端附近的应力趋于无穷大。

然而,事实上任何实际工程材料,都不可能承受无穷大的应力作用。

因此,裂尖附近的材料必然要进入塑性,发生屈服。

3,Linearelasticfracturemechanicspredictsinfinitestressesatthecracktip.Inrealmaterials,however,stressatthecracktiparefinitebecausethecracktipradiusmustbefinite.Inelasticmaterialdeformation,suchasplasticityinmetal,leadstofurtherrelaxationofthecracktipstress.,线弹性断裂力学预测裂纹尖端应力无穷大。

然而在实际材料中,由于裂尖半径必定为有限值,故裂尖应力也是有限的。

非弹性的材料变形,如金属的塑性,将使裂尖应力进一步松弛。

4,7.1裂纹尖端的小范围屈服,1.裂尖屈服区,当r0时,s,必然要发生屈服。

因此,有必要了解裂尖的屈服及其对K的影响。

无限大板中裂纹尖端附近任一点(r,)处的正应力x、y和剪应力xy的线弹性解为:

5,这里仅简单讨论沿裂纹线上屈服区域的大小。

线弹性断裂力学,裂尖附近任一点处的x、yxy,,6,对于平面问题,还有:

yz=zx=0;z=0平面应力z=(x+y)平面应变,7,式中,ys为材料的屈服应力,为泊松比。

对于金属材料,0.3,这表明平面应变情况下裂尖塑性区比平面应力时小得多。

8,虚线为弹性解,r0,y。

由于yys,裂尖处材料屈服,塑性区尺寸为rp。

当=0时(在x轴上),裂纹附近区域的应力分布及裂纹线上的塑性区尺寸如图。

与原线弹性解(虚线HK)相比较,少了HB部分大于ys的应力。

假定材料为弹性-理想塑性,屈服区内应力恒为ys,应力分布应由实线AB与虚线BK表示。

9,Thesimpleanalysisasaboveisnotstrictlycorrectbecauseitwasbasedonanelasticcracktipsolution.Whenyieldingoccurs,stressmustredistributeinordertosatisfyequilibrium.,上述简单分析是以裂纹尖端弹性解为基础的,故并非严格正确的。

屈服发生后,应力必需重分布,以满足平衡条件。

TheregionABHrepresentsforcesthatwouldbepresentinanelasticmaterialbutcannotbecarriedintheelastic-plasticmaterialbecausethestresscannotexceedyield.Theplasticzonemustincreaseinsizeinordertocarrytheseforces.,ABH区域表示弹性材料中存在的力,但因为应力不能超过屈服,在弹塑性材料中却不能承受。

为了承受这些力,塑性区尺寸必需增大。

10,为满足静力平衡条件,由于AB部分材料屈服而少承担的应力需转移到附近的弹性材料部分,其结果将使更多材料进入屈服。

因此,塑性区尺寸需要修正。

设修正后的屈服区尺寸为R;假定线弹性解答在屈服区外仍然适用,BK平移至CD,为满足静力平衡条件,修正后ABCD曲线下的面积应与线弹性解HBK曲线下的面积相等。

由于曲线CD与BK下的面积是相等的,故只须AC下的面积等于曲线HB下的面积即可。

11,于是得到:

12,依据上述分析,并考虑到平面应变时三轴应力作用的影响,Irwin给出的塑性区尺寸R为:

上式指出:

裂纹尖端的塑性区尺寸R与(K1/ys)成正比;平面应变时的裂尖塑性区尺寸约为平面应力情况的1/3。

13,Mostoftheclassicalsolutioninfracturemechanicsreducetheproblemtotwodimensions.Thatisatleastoneoftheprincipalstressesorstrainsisassumedtoequalzero(planestressandplanestrainrespectively).,断裂力学中的大部分经典解都将问题减化为二维的。

即主应力或主应变中至少有一个被假设为零,分别为平面应力或平面应变。

Ingeneral,theconditionsaheadofacrackareneitherplanestressnorplanestrain,butarethree-dimensional.Thereare,however,limitingcaseswhereatwodimensionalassumptionisvalid,oratleastprovidesagoodapproximation.,一般地说,裂纹前的条件既不是平面应力,也不是平面应变,而是三维的。

然而,在极限情况下,二维假设是正确的,或者至少提供了一个很好的近似。

14,2.考虑裂尖屈服后的应力强度因子,曲线CD与线弹性解BK相同。

假想裂纹尺寸由a增大到a+rp,则裂纹尖端的线弹性解恰好就是曲线CD。

对于理想塑性材料,考虑裂纹尖端的屈服后,裂尖附近的应力分布应为图中ACD曲线。

15,16,例7.1无限宽中心裂纹板,受远场拉应力作用,试讨论塑性修正对应力强度因子的影响。

17,对于平面应力情况,=1;若(/ys)=0.2,=1%;若(/ys)=0.5,=6%;当(/ys)=0.8时,达15%。

对于平面应变情况,3,二者相差要小一些。

可见,(/ys)越大,裂尖塑性区尺寸越大,线弹性分析给出的应力强度因子误差越大。

18,3.小范围屈服时表面裂纹的K修正,前表面修正系数通常取为Mf=1.1;E(k)是第二类完全椭圆积分。

无限大体中半椭圆表面裂纹最深处的应力强度因子为:

19,可见,小范围屈服时,表面裂纹的K计算只须用形状参数Q代替第二类完全椭圆积分E(k)即可。

利用E(k)式的近似表达,可将形状参数Q写为:

20,例7.2某大尺寸厚板含一表面裂纹,受远场拉应力作用。

材料的屈服应力为ys=600MPa,断裂韧性K1c=50MPam1/2,试估计:

1)=500MPa时的临界裂纹深ac。

(设a/c=0.5)2)a/c=0.1,a=5mm时的临界断裂应力c;,解:

1)无限大体中半椭圆表面裂纹最深处的K最大,考虑小范围屈服,在发生断裂的临界状态有:

21,故得到:

22,不考虑屈服,将给出偏危险的预测。

23,一般地说,只要裂尖塑性区尺寸rp与裂纹尺寸a相比是很小的(a/rp=20-50),即可认为满足小范围屈服条件,线弹性断裂力学就可以得到有效的应用。

对于一些高强度材料;对于处于平面应变状态(厚度大)的构件;对于断裂时的应力远小于屈服应力的情况;小范围屈服条件通常是满足的。

24,PlasticitycorrectingcanextendLEFMbeyonditsnormalvaliditylimits.Onemustremember,however,thatIrwincorrectionareonlyroughapproximateofelastic-plasticbehavior.Whennonlinearmaterialbehaviorbecomessignificant,oneshoulddiscardstressintensityandadoptacracktipparameter(suchasthecracktipopeningdisplacement,CTOD)thattakesthematerialbehaviorintoaccount.,塑性修正可将LEFM延用至超过其原正确性限制。

但必需记住Irwin修正只是弹塑性行为的粗略近似。

当非线性材料行为为主时,应抛弃应力强度因子而采用如CTOD的裂尖参数考虑材料的行为。

25,WhenWellsattemptedtomeasureK1cvalueinanumberofstructuralsteels,hefoundthatthesematerialsweretootoughtobecharacterizedbyLEFM.Thisdiscoverybroughtbothgoodnewsandbadnews:

hightoughnessisobviouslydesirabletodesignersandfabricators,butWellsexperimentsindicatedthatexistingfracturemechanicstheorywasnotapplicabletoanimportantclassofmaterials.,Wells试图测量结构钢材的K1c时,发现这些材料韧性太大而不能用LEFM描述。

这一发现带来的既有好消息也有坏消息:

高韧性显然是设计及制造者所希望的,但Wells的试验指出现有的断裂力学理论不能用于这类重要的材料。

26,Whileexaminingfracturedtestspecimens,Wellsnoticethatthecrackfaceshadmovedapartpriortofracture;plasticdeformationbluntedaninitiallysharpcrack.Thedegreeofcrackbluntingincreasedinproportiontothetoughnessofmaterial.ThisobservationledWellstoproposetheopeningatthecracktipasameasureoffracturetoughness.Todaythisparameterisknownasthecracktipopeningdisplacement.,检查已断的试件,Wells注意到断裂前裂纹面已分开;塑性变形使原尖锐的裂纹钝化。

钝化的程度随材料的韧性而增加。

这一观察使Wells提出用裂尖的张开作为断裂韧性的度量。

此参数即现在的裂纹尖端张开位移。

27,习题:

7-3,7-4,再见,第一次课完请继续第二次课,返回主目录,28,第七章弹塑性断裂力学简介,7.1裂纹尖端的小范围屈服,7.2裂纹尖端张开位移,7.3COD测试与弹塑性断裂控制设计,返回主目录,29,7.2裂纹尖端张开位移(CTOD-CrackTipOpeningDisplacement),则塑性区将扩展至整个截面,造成全面屈服,小范围屈服将不再适用。

30,显然,COD是坐标x的函数,且裂纹尺寸a越大,COD越大。

裂尖张开位移(CTO

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1