实用电子秤的设计与制作.docx

上传人:b****9 文档编号:25147909 上传时间:2023-06-05 格式:DOCX 页数:16 大小:470.11KB
下载 相关 举报
实用电子秤的设计与制作.docx_第1页
第1页 / 共16页
实用电子秤的设计与制作.docx_第2页
第2页 / 共16页
实用电子秤的设计与制作.docx_第3页
第3页 / 共16页
实用电子秤的设计与制作.docx_第4页
第4页 / 共16页
实用电子秤的设计与制作.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

实用电子秤的设计与制作.docx

《实用电子秤的设计与制作.docx》由会员分享,可在线阅读,更多相关《实用电子秤的设计与制作.docx(16页珍藏版)》请在冰豆网上搜索。

实用电子秤的设计与制作.docx

实用电子秤的设计与制作

ModifiedbyJACKontheafternoonofDecember26,2020

 

实用电子秤的设计与制作

 

 

 

(实用电子秤的设计与制作)

学院名称:

电气信息工程学院

专业:

电气工程及其自动化

班级:

05自控

(1)

姓名:

姜中娟

学号:

05312205

指导教师:

朱品伟

 

2009年1月

实用电子秤的设计与制作

摘要:

本系统利用应变式称重台,将四片应变片采用全桥形式接入测量电路,经过运放OP07组成的仪表放大器放大,再由串行模数转换芯片TLC549进行A/D转换,转换结果送入单片机AT89C51,通过同向门7407驱动四位数码管显示。

关键词:

应变片;仪表放大器;TLC549;AT89C51

Abstract:

Thesystemusesstrainweighingunits,fourstraingaugeswiththeformoffullbridgeaccessedtothemeasurementcircuit,afterthecompositionofOP07instrumentationamplifier.Thenbyserialanalog-to-digitalconversionchipTLC549forA/Dconversion,theconversionresultsaregiventothesingle-chipmicrocomputerAT89C51,thenthroughthe7407drivetofourdigitaltubedisplay.

Keywords:

Straingauge;Measuringapplianceamplifier;TLC549;AT89C51

 

1概述

引言

系统原理概述

组成及框图

2硬件电路设计

应变电桥电路

仪表放大器电路

2.3A/D转换电路

显示电路

3软件设计

程序流程图

源程序清单

4系统调试与分析

硬件调试

软件调试

综合调试

故障分析与解决方案

5功能测试及结果分析

测试仪器

测试结果与分析

6结束语

参考文献

附录

1概述

引言

随着科技的进步,对电子秤的应用越来越广泛。

传统机械秤是杠杆放大系统,系统中载重架上比较小的垂直偏移经过放大后在秤的刻度上形成很大的指针偏转。

然而载重架的偏移量通常很大,所以不允许机械秤安装在工业过程的设备中,相反,用于电子秤的称重传感器的压缩量通常可以忽略不计,可以安装在工业过程设备中。

本系统是基于单片机控制的电子秤,控制精度较高,实时性较强,同时采用LED显示,既美观又实用。

系统原理概述

本系统利用应变式称重台,将四片应变片采用全桥形式接入测量电路,经过运放OP07组成的仪表放大器放大,再由串行模数转换芯片TLC549进行A/D转换,转换结果送入单片机AT89C51,通过同向门7407驱动四位数码管显示。

由称重传感器来的电信号经过放大和处理后,通过模/数转换后在LED上显示。

仪表放大器的输出需经采集卡采集,经过虚拟仪器软件分析,得到较好的线性度和灵敏度后,才能再送入A/D芯片进行转换。

组成及框图

±15V供电电

图1系统框图

2硬件电路设计

应变电桥电路

电阻应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻应变敏感元件构成。

当被测物理量作用在弹性元件上时,弹性元件的变形引起应变敏感元件的阻值变化,通过转换电路转换成电量输出,电量变化的大小反映了被测物理量的大小。

其主要缺点是输出信号小、线性范围窄,而且动态响应较差。

但由于应变片的体积小,商品化的应变片有多种规格可供选择,而且可以灵活设计弹性敏感元件的形式以适应各种应用场合,所以用应变片制造的应变式压力传感器在测量力、力矩、压力、加速度、重量等参数中仍有非常广泛的应用。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

当具有初始电阻值R的应变片粘贴于试件表面时,试件受力引起的表面应变,将传递给应变片的敏感栅,使其产生电阻相对变化ΔR/R。

在一定应变范围内ΔR/R与ε的关系满足下式:

,ε为应变片的轴向应变。

定义K=(ΔR/R)/ε为应变片的灵敏系数。

它表示安装在被测试件上的应变在其轴向受到单向应力时,引起的电阻相对变化ΔR/R与其单向应力引起的试件表面轴向应变ε之比。

电阻应变片计把机械应变转换成ΔR/R后,应变电阻变化一般都很微小,例如传感器的应变片电阻值120Ω,灵敏系数K=2,弹性体在额定载荷作用下产生的应变为1000μ,应变电阻相对变化量为:

ΔR/R=K*ε=2*1000*10ˉ6=

可以看出电阻变化只有120*=Ω,其电阻变化率只有%。

这样小的电阻变化既难以直接精确测量,又不便直接处理。

因此,必须采用转换电路,把应变片计的ΔR/R变化转换成电压或电流变化。

通常采用惠斯登电桥电路实现这种转换。

若将电桥四臂接入四片应变片,如图2所示,即两个受拉应变,两个受压应变,将两个应变符号相同的接入相对桥臂上,构成全桥差动电路。

在接入四片应变片时,需满足以下条件:

相邻桥臂应变片应变状态应相反,相对桥臂应变片应变状态应相同。

可简称为:

“相邻相反,相对相同”。

此时

全桥差动电路不仅没有非线性误差,而且电压灵敏度图2全桥电路

为单片工作时的4倍,同时具有温度补偿作用。

当E和电阻相对变化一定时,电桥的输出电压及其电压灵敏度与各桥臂阻值的大小无关。

仪表放大器电路

2.2.1仪表放大器工作原理

由于传感器的输出信号往往较小,必须经过放大电路进行调理放大,再进行测量。

常用的放大电路可以由单运放放大器、双运放放大器、三运放放大器或直接由集成仪表放大器(如AD620、AD623)等构成。

下面以三运放构成的仪表放大器为例说明仪表放大器的工作原理及性能指标,运算放大器选择高精度运放OP07。

2.2.2集成运算放大器OP-07

OP-07有A、D、C、E各档,它是高精度运算放大器,具有极低的失调电压(10μV)和偏置电流(),它的温漂系数为μV/℃,OP-07具有较高的共模输入范围(±14V),共模抑制比CMRR=126dB,以及极宽的供电电流范围(从±3V到±18V),双电源供电。

ADOP-07的封装、管脚排列以及基本连接方式如下图所示,OP07一般不需要调零,如需调零,可在1和8管脚之间接一个电位器,阻值可为20k,参见基本接法图。

图3OP-07封装图

管脚功能图基本接法

图4运算放大器引脚图

2.2.3仪表放大器工作电路

图5,图6是压力传感器的测量电路,由两个部分组成。

前一部分是采用三个运放构成的仪表放大器,后面的放大器将仪表放大器的输出电压进一步放大。

R28是电桥的调零电阻,R42是整个放大电路的调零电阻,R29,R40调整运放增益。

仪表放大器因为输入阻抗高,共模抑制能力好而作为电桥的接口电路。

其增益可用下式表示:

A1=1+2R30/R29;反相放大器部分的增益可用下式表示:

A2=-(R38+R40)/R37;

图5仪表放大器

图6反相放大器

2.3A/D转换电路

一般电子秤的A/D转换精度越高越好,A/D精度越高,电子秤的灵敏度越高。

但12的A/D芯片价格比较贵,考虑到实验室条件,本次设计采用8位串行A/D芯片TLC549。

TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器通过SDO、SCLK、CS三条口线进行串行接口"具有4MHz片内系统时钟和软硬件控制电路,转换时间最长17微秒。

允许的最高转换速率为40000次/秒。

总失调误差最大为±(最低有效位)。

可用于较小信号的采样。

与AT89C51的具体连接线路如图7所示。

REF+接5V电源,REF-接地,图中输入电压为,TLC549的AIN引脚接仪表放大器的输出端。

SDO、CS、SCLK分别接AT89C51的、、引脚。

图7TLC549电路连接

TLC549在读出前一次数据后,马上进行电压采样,ADC转换,转换完后就进入HOLD模式,直到再次读取数据时,芯片才会进行下一次A/D转换。

也就是说,本次读出的数据是前一次转换的值,读操作后就会再启动一次转换,一次转换所用的时间最长为17uS。

显示电路

采用4个共阴数码管,以动态扫描方式显示电压值。

图8显示电路

3软件设计

程序流程图

 

 

图9程序流程图

源程序清单

#include<>

#include<>

#defineuintunsignedint

#defineucharunsignedchar

sbitcs=P1^1;/*片选*/

sbitclk_adc=P1^2;/*TLC549的时钟信号*/

sbitdout_adc=P1^0;/*TLC549的数据输出*/

floatvolt;

uintb;

ucharLED0_data,LED1_data,LED2_data,LED3_data;

ucharcodeSegcode[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

voiddisplay();

voiddelay(uintv);

/*1ms延时子函数*/

voiddelay(unsignedintc)

{

unsignedinti,j;

for(i=0;i

for(j=0;j<120;j++);

}

/*TLC549转换数据读出程序*/

uchartlc549_read()

{

uchari,adcdata;

adcdata=0;

cs=1;

clk_adc=0;

cs=0;

_nop_();

_nop_();

_nop_();

for(i=0;i<8;i++)

{clk_adc=1;

adcdata=adcdata<<1;

if(dout_adc)

adcdata++;

clk_adc=0;

}

cs=1;

delay

(1);

returnadcdata;

}

/*将十进制数拆成送数码管的显示码*/

voiddectobit(intdec)

{

LED3_data=dec/1000;

dec=dec%1000;

LED2_data=dec/100;

dec=dec%100;

LED1_data=dec/10;

dec=dec%10;

LED0_data=dec;

}

/*显示程序*/

voiddisplay()

{

P0=Segcode[LED3_data];

4.4.14.4.2

20g朱品伟朱拟电子技术基础[M].北京:

高等教育出版社,2003.

[2]夏红钗,施晓钟.议晶体三极管的工作状态[J].,2007,(08).

[3]冯博琴.微型计算机硬件技术基础[M].北京:

高等教育出版社,2003.

[4]张俊谟.单片机中级教程[M].北京:

北京航空航天大学出版社,2000.

[5]张友德,赵志英等.单片微型机原理、应用与实验[M].上海:

复旦大学出版社,2000.

[6]卢艳军.单片机基本原理及应用系统[M].北京:

机械工业出版社,2005.

[7]陈永真等.全国大学生电子设计竞赛试题精解选[M].北京:

电子工业出版社,2007.

[8]崔玮.PROTEL99SE电路原理图与电路板设计教程[M].北京:

海洋出版社,2005.

[9]郁有文等.传感器原理及工程应用[M].西安:

西安电子科技大学出版社,2007.

[10]张齐,杜群贵.单片机应用系统设计技术[M].北京:

电子工业出版社,2004.

 

附录

(1)元器件明细表

单片机

AT89C51

运放

OP07

A/D转换器

TLC549

数码管

SM420564

同向驱动器

SN7407N

(2)实物图

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1