发光材料综述Word文件下载.docx

上传人:b****7 文档编号:22210439 上传时间:2023-02-03 格式:DOCX 页数:8 大小:126.23KB
下载 相关 举报
发光材料综述Word文件下载.docx_第1页
第1页 / 共8页
发光材料综述Word文件下载.docx_第2页
第2页 / 共8页
发光材料综述Word文件下载.docx_第3页
第3页 / 共8页
发光材料综述Word文件下载.docx_第4页
第4页 / 共8页
发光材料综述Word文件下载.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

发光材料综述Word文件下载.docx

《发光材料综述Word文件下载.docx》由会员分享,可在线阅读,更多相关《发光材料综述Word文件下载.docx(8页珍藏版)》请在冰豆网上搜索。

发光材料综述Word文件下载.docx

学院:

物理与电子工程学院

专业:

材料物理13-01 

学号:

541311020102 

姓名:

陈强  

摘要:

能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。

发光是辐射能量以可见光的形式出现。

辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为1.8~3.1eV)。

如果这些光子的波长在可见光范围内,那么,便产生了发光现象。

0引言

发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料 的研制和运用受到越来越多的关注。

本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。

发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。

随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。

1发光材料分类

发光材料按激发的方式可分为以下几类:

1.1光致发光材料

用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。

光致发光过程分为三步:

①吸收一个光子;

②把激光能转移到荧光中心;

③由荧光中心发射辐射。

发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。

光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。

按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。

 

图1

1.2电致发光材料

所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。

这种发光材料称为电致发光材料,或称场致发光材料。

1.本征式场致发光

ﻩ简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。

2.注入式发光

ﻩ注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ- Ⅴ族化合物所制成的有p-n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由n区和p区注人到结区并相互复合而发光的现象。

又称p-n结电致发光

目前大概可以有以下几种材料:

1.2.1直流电压激发下的粉末态发光材料

目前常用的直流电致发光材料有ZnS:

Mn,Cu,其发光亮度大约为350cd/m。

其他还有ZnS:

Ag可发出蓝光;

(Zn.Cd)S:

Ag可发出绿光。

另外还有一些在Ca S、Sr S等基质中掺杂稀土元素的材料。

1.2.2交流电压激发下的粉末态发光材料

这种材料与直流电压激发下的发光材料有较高的流明效率(直流为0.5Im/W,交流可达15Im/W)所以它应用的较为普遍。

以ZnS为代表,可在ZnS粉末中掺入铜氯、铜锰、铜铅、铜等激活剂后,与介电常数很高的有机介质相混合后制成。

可发出红、橙、黄、绿、蓝等各种色彩的光。

其中激活剂以质量百分比计,烧成时间均为1h。

1.2.3薄膜型电致发光材料

它与以上两种基本相似,只是其中不需要有机介质,可以在较高的高频电压下工作,发光亮度很高,发光效率也较高,可达几个流明/瓦。

1.2.4p-n结型电致发光材料

即发光二极管所用材料。

发光二极管是一种在低电压下发光的器件,它可使用单晶或单晶薄膜材料。

发光二极管简称LED(Light Emitting Dicde的缩写),最早出现在1968年,由美国HP(新惠普的前身)首先以磷砷化镓(Ga As·

P)为材质制成的黄色LED(属于冷光)具有耗电量小、寿命长、反应快、体积小、耐候性好等优点,被誉为第二次照明革命。

1990年开发了磷化铟镓(Al·

Ga·

In·

P)与氮化镓(Ga N)等2种材料后,长期以来,可见光LED的发展方向是以高亮度化、全彩化和白光化为主。

图2 p-n结电致发光原理

(a)热平衡状态;

(b)加正偏压时的状态

1.3 热致发光材料。

发光材料在热(随温度的变化)的作用下而激发发光的材料叫做热致发光材料。

热致发光又称热释光[1]。

受激发后的发光体在停止发光后,对其加热升温,又继续发光并逐渐加强的现象叫热释发光。

但热能不是用来激发发光,而是释放光能的。

加热使发光材料贮存的激发能逐渐释放出来。

这种现象与发光材料中的电子陷阱相联系。

1.4射线致发光材料

射线致发光指发光材料在加速电子的轰击下的激发发光。

射线致发光材料可分为阴极射线致发光材料和放射线致发光材料两种。

阴极射线致发光是由电子束轰击发光物质而引起的发光现象。

放射线致发光是由高能的α、β、X射线轰击发光物质而引起的发光现象。

阴极射线致发光材料是指在阴极射线激发下能发光的材料,也称为电子束激发发光材料。

x放射线致发光的发光原理为:

发光材料在X射线照射下发生康普顿效应和吸收X射线,均可产生高速的光电子。

光电子经过非弹性碰撞,产生第二、三代电子。

这些电子可激发或离化发光中心,发出光来。

因而,一个X射线的光子可以引起很多个发光光子。

1.5等离子发光材料

发光材料在等离子体的作用下的激发发光。

等离子体是高度电离化的多种粒子存在的空间,其中带电粒子有电子、正离子,不带电的粒子有气体原子、分子、受激原子、亚稳原子等。

由于气体的高度电离,所以带电粒子的浓度很大,而且带正电与带负电粒子的浓度接近相等。

气体的电子得到足够的能量之后,可以完全脱离原子,即被电离。

这种电子比在固体中自由得多,它具有较大的动能,以较高的速度在气体中飞行。

而且电子在运动过程中与其他粒子会产生碰撞,使更多的中性粒子电离。

在大量的中性粒子不断电离的同时,还有一个与电离相反的过程,就是复合现象。

如图3所示。

复合就是两种带电的粒子结合形成中性原子。

在复合过程中,电子将能量以光的形式放出来,即能辐射出频率为ν的光。

图4材料光吸收的本质

2材料的发光机理

2.1分立中心发光(未离化)

发光材料的发光中心(即发光体内部在结构中能发光的分子)受激发时并未离化,即激发和发射过程在彼此独立的、个别的发光中心内部的发光叫做分立中心发光。

这种发光是单分子过程,并不伴随有光电导,故又称“非光电导型”发光。

分立中心发光有两种情况:

图5 分立中心发光(a)自发发光(b)受迫发光

(1)自发发光。

受激发的粒子(如电子)受粒子内部电场作用从激发态A回到基态G时的发光,叫自发发光,如图5(a)所示。

自发发光的特征是,与发射相应的电子跃迁的几率基本上决定于发射体内的内部电场,而不受外界因素影响。

(2)受迫发光。

受激发的电子只有在外界因素影响下才发光,叫受迫发光。

受迫发光的特征是,发射过程分为两个阶段,如图5(b)所示,受激发的电子出现在受激态M上时,从状态M直接回到基态G上是禁阻的。

在M上的电子,一般也不是直接从基态G上跃迁来的,而是电子受激后,先由基态G跃迁到A,再到M态上,M这样的受激态称为亚稳态。

受迫发射的第一阶段是由于热起伏,电子吸收能量后,从M态上到A,要实现这一步,电子在M态上需要花费时间,等待机会,从A态回到G态是允许的,这就是受迫发射的第二阶段。

由于这种发光要经过亚稳态,故又称为亚稳态发光。

2.2复合发光(离化)

发光材料受激发时分离出一对带异号电荷的粒子,一般为正离子(空穴)和电子,这两种粒子在复合时便发光,叫复合发光。

由于离化的带电粒子在发光材料中漂移或扩散,从而构成特征性光电导,所以复合发光又叫“光电导型”发光。

复合发光可以在一个发光中心上直接进行,即电子脱离发光中心后,又回来与原来的发光中心复合而发光,呈单分子过程,电子在导带中停留的时间较短,不超过10-10s,是短复合发光过程。

大部分复合发光是电子脱离原来的发光中心后,在运动中遇到其他离化了的发光中心复合发光,呈双分子过程,电子在导带中停留的时间较长,是长复合发光过程。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1