国民经济建设生产投资等关系的数学建模与分析Word下载.docx
《国民经济建设生产投资等关系的数学建模与分析Word下载.docx》由会员分享,可在线阅读,更多相关《国民经济建设生产投资等关系的数学建模与分析Word下载.docx(41页珍藏版)》请在冰豆网上搜索。
455.8
536.1
438.7
519
433.5
522.7
437
493.6
434
471
表2
(3)中国近年M0、M1、M2情况
M2
M1
M0
974159.46
308672.99
54659.81
851590.9
289847.7
50748.46
725851.8
266621.5
44628.17
606225.01
220001.51
38245.9
475166.6
166217.13
34218.96
403442.21
152560.08
30375.23
345603.59
126035.13
27072.62
298755.7
107278.8
24031.7
254107
95969.7
21468.3
221222.8
84118.57
19745.9
185006.97
70881.79
17278.03
158301.9
59871.59
15688.8
134610.3
53147.2
14652.7
表3
(4)工业生产总值
工业增值
199670.66
188470.15
160722.23
135239.95
130260.24
110534.88
91310.94
2004
77230.78
65210.03
54945.53
47431.31
43580.62
40033.59
表4
(5)农业生产总值
农业生产总值
46940.46
41988.64
36941.11
30777.48
28044.15
24658.17
21522.28
19613.37
18138.36
14870.11
14931.54
14462.79
13873.59
表5
(6)大中城市(这里只以北京为例)房价情况
月份
价格
Jan-08
11605
Jan-09
11739
Jan-10
18322
Jan-11
22972
Feb-08
13077
Feb-09
12092
Feb-10
Feb-11
23491
Mar-08
13523
Mar-09
12069
Mar-10
Mar-11
24074
Apr-08
13190
Apr-09
12105
Apr-10
Apr-11
24588
May-08
13178
May-09
12545
May-10
May-11
25333
Jun-08
13084
Jun-09
12572
Jun-10
Jun-11
24689
Jul-08
13481
Jul-09
13111
Jul-10
Jul-11
25210
Aug-08
12876
Aug-09
13704
Aug-10
Aug-11
23649
Sep-08
12941
Sep-09
15260
Sep-10
Sep-11
25686
Oct-08
12712
Oct-09
15753
Oct-10
Oct-11
22708
Nov-08
12308
Nov-09
16025
Nov-10
Nov-11
23736
Dec-08
12592
Dec-09
17742
Dec-10
Dec-11
22857
Jan-12
23760
Jan-13
34741
Jan-14
44542
Feb-12
23474
Feb-13
35947
Feb-14
45799
Mar-12
23050
Mar-13
36715
Mar-14
46677
Apr-12
25625
Apr-13
38220
Apr-14
46638
May-12
26400
May-13
38063
May-14
47028
Jun-12
28374
Jun-13
40163
Jun-14
Jul-12
27381
Jul-13
40656
Jul-14
Aug-12
28382
Aug-13
41278
Aug-14
Sep-12
30631
Sep-13
41761
Sep-14
Oct-12
31955
Oct-13
40291
Oct-14
Nov-12
32769
Nov-13
41840
Nov-14
Dec-12
33417
Dec-13
42656
Dec-14
表6
(7)汇率
人民币对美元汇率(美元=100)(元)
人民币对日元汇率(日元=100)(元)
人民币对港元汇率(港元=100)(元)
人民币对欧元汇率(欧元=100)(元)
631.25
7.9
81.38
810.67
645.88
8.11
82.97
900.11
676.95
7.73
87.13
897.25
683.1
7.3
88.12
952.7
694.51
6.74
89.19
1022.27
760.4
6.46
97.46
1041.75
797.18
6.86
102.62
1001.9
819.17
7.45
105.3
1019.53
827.68
7.66
106.23
1029.54
827.7
7.15
106.24
936.13
表7
(8)利率
①存款利率
单位:
年利率%
调整时间
活期
3个月
半年
一年
二年
三年
五年
2002年2月21日
0.72
1.71
1.89
1.98
2.25
2.52
2.79
2004年10月29日
2.07
2.70
3.24
3.60
2006年8月19日
1.80
3.06
3.69
4.14
2007年3月18日
2.43
3.33
3.96
4.41
2008年10月9日
3.15
3.51
3.87
5.13
5.58
2008年12月23日
0.36
2009年12月23日
2010年10月20日
1.91
2.20
2.50
3.25
3.85
4.20
2011年7月7日
0.5
3.1
3.3
3.5
4.4
5.00
5.5
2012年6月8日
0.4
2.85
3.05
4.1
4.65
5.1
表8.1中国商业存款利率
②贷款利率
六个月以内(含六个月)
六个月至一年(含一年)
一至三年(含三年)
三至五年(含五年)
五年以上
2002.02.21
5.04
5.31
5.49
5.76
2004.10.29
5.22
5.85
6.12
2006.04.28
5.40
6.03
6.39
2007.08.22
6.21
7.02
7.20
7.38
7.56
2007.12.21
6.57
7.47
7.74
7.83
2008.10.30
6.66
6.75
2008.12.23
4.86
5.94
2010.10.20
5.10
5.56
5.60
5.96
6.14
2011.04.06
6.31
6.40
6.65
6.80
2012.06.08
6.4
6.8
表8.2中国商业贷款利率
2.问题分析
本文主要研究国民经济建设、生产、投资等关系,在第一个问题上,由于涉及太多对象和数据,为了既简洁又准确的得到指标间的关系,我们选择探讨指标间的简单相关、复相关、偏相关、三种关系。
首先,GDP是指国内生产总值,范围最广,所以我们会研究GDP与其他相关指标的简单相关关系和复相关关系。
其次,M0、M1、M2之间关系比较明确,有M0=流通中现金,M1=M0加上单位在银行的活期存款,M2=M1加上在银行的定期存款和城乡居民个人在银行的各项储蓄存款以及证券客户保证金,所以这里我们不再进一步研究他们三者之间的相关关系,最后,汇率和利率这两者之间,在一般情况下,前者波动会引起后者波动,同样后者变化也会引起前者变化,关系具有特殊性,为了更好的反应它们之间的关系,我们会具体研究它们之间的偏相关关系。
针对第二个问题,我们决定用回归分析来解决,因为回归分析能够很详细的处理变量和变量间的关系,它是通过对总体变量中的样本数据,去寻找隐藏在数据背后的关系,并且能够很好的检验结果的准确性。
对于第三个问题,由于影响GDP的因素太多,根本无法精确的计算预测,具有灰色性,因此采用指数增长模型去发掘其内在规律。
对于房价,黄金价格,可以采用时间序列分析和线性分析对其预测。
第四个问题,由于有多个因变量,因此可以用回归模型中的多元回归分析模型来解决。
最后再讨论各个模型的优缺点,并且作出评价
3.模型假设
[1]假设在研究GDP增长模型时一切外界因素保持稳定,GDP保持正常增长;
[2]假设在研究房价时外界因素保持和往时一样,不会出现太大波动;
[3]假设在研究黄金价格时外界因素保持和往时一样,不会出现太大波动;
[4]假设在研究汇率和利率的偏相关关系贷款或者存款利率不会出现太大波动;
4.符号说明
Y2000-2012年的GDP值
X12000-2012年的CPI值
X202000-2012年的M0值
X212000-2012年的M1值
X222000-2012年的M2值
X32000-2012年的工业生产总值
X42000-2012年的农业生产总值
ρXiYY和Xi之间的相关系数
ρXiYjXi和Xj之间的相关系数
RY,XiXjY同Xi,Xj之间的多元相关系数
X52002-2012年的汇率值
X612002-2012年的存款利率值
X622002-2012年的贷款利率值
RX5,X61汇率率和存款利率之间的偏相关系数
RX5,X62汇率率和贷款利率之间的偏相关系数
β0^β1^最小二乘法估计
y^回归方程因变量
tt分布系数
5.模型的建立和求解
5.1变量的一元和多元相关关系
5.1.1指标间的简单相关关系问题
GDP是指国内生产总值,范围最广,所以我们会研究GDP与其他相关指标的简单相关关系和复相关关系。
首先研究两个变量的简单相关关系,通过表1,2,3,4,5有
GDP值,Y=[99214.55109655.17120332.69135822.76159878.34184937.37216314.43265810.31314045.43340902.81401512.8473104.05519470.1]
CPI值,X1=[434437433.5438.7455.8464471493.6522.7519536.1565579.7]
M0值,X20=[14652.715688.817278.0319745.921468.324031.727072.6230375.2334218.9638245.9744628.1750748.4654659.81]
M1值,X21=[53147.259871.5970881.7984118.5795969.7107278.8126035.13152560.08166217.13220001.51266621.5289847.7308672.99]
M2值,X22=[134610.3158301.9185006.97221222.8254107298755.7345603.59403442.21475166.6606225.01725851.8851590.9974159.46]
工业生产总值,X3=[40033.5943580.6247431.3154945.5365210.0377230.7891310.94110534.88130260.24135239.95160722.23188470.15199670.66]
农业生产总值,X4=[13873.5914462.7914931.5414870.1118138.3619613.3721522.2824658.1728044.1530777.4836941.1141988.6446940.46]
(1)
结合以上数据,通过matlab和Excel软件,画出Y与X1、X20、X21、X22、X3、X4之间的散点图,见下:
容易看出,GDP值,即Y与各个变量,CPI,M0,M1,M2,工业生产总值,农业生产总值之间分布的散点图基本在一条直线附近,且都是递增线性关系,由此说明它们之间呈现线性正相关。
图5.1.1.1
(2)紧接着,我们把X1(CPI)作为因变量,讨论它与X20,X21,X22,X3,X4之间的相关关系,我们同样画出它们的散点图。
见左图:
同样,我们可以看出,CPI值,即X1与其他各个指标的散点图也在一条直线的附近,同样为递增关系,所以它们呈现出简单正相关的线性关系。
图5.1.1.2
(3)把X3(工业生产总值)作为因变量,讨论它与其他各个指标的关系,其散点图分布情况如下:
很明显,工业生产总值和其他各个变量之间还是呈线性正相关。
图5.1.1.3
(4)把X4(农业生产总值)作为因变量,讨论它与其他变量间的关系,如下图:
图5.1.1.4
从图上可以看出,农业生产总值也和其它变量呈线性正相关的线性关系。
总结:
任一指标作为因变量均与其他指标间存在确定的正相关线性关系
另外,我们又通过相关函数法确定相关系数来验证我们的结果,
利用Excel软件进行计算。
根据公式:
分别得出X与Y1Y20Y21Y22Y3Y4,Y1与Y1Y20Y21Y22Y3Y4,Y3与Y1Y20Y21Y22Y4,Y4与Y1Y20Y21Y22Y3之间的相关系数:
ρX1Y=0.99497888ρX20Y=0.998634944
ρX21Y=0.99257012ρX22Y=0.994882097
ρX3Y=0.99851256ρX4Y=0.99669855
ρX1X20=0.98986322ρX1X21=0.979541845
ρX1X22=0.982017739ρX1X3=0.996154187
ρX1X4=0.988543303
ρX3X1=0.996154187ρX3X20=0.997059395
ρX3X21=0.989683941ρX3X22=0.988933883
ρX3X4=0.991972805
ρX4X1=0.988543303ρX4X20=0.995761593
ρX4X21=0.991480786ρX4X22=0.997437609
ρX4X3=0.991972805
从以上数据可以看出,所有的相关系数都在[-1.1]范围内,并且全都大于0,所以全为正相关,和从散点图得出的结果一致。
因此,得出结论:
各指标间都存在简单的相关关系。
5.1.2指标间的多元相关关系问题
前面我们讨论了指标间的简单相关,但是也有更深层的关系,所以我们再通过多元相关分析来研究其复相关关系,这里我们以GDP为因变量Y,因为指标间两两相关系数都很接近1,所以我们只需要讨论三者间的相关程度,根据公式:
利用Excel计算得到结果:
RY,X1X20=0.99247248RY,X1X21=0.99012124
RY,X1X22=0.99321613RY,X1X3=0.991023135
RY,X1X4=0.994217212
RY,X20X21=0.98323164RY,X20X22=0.98237174
RY,X20X3=0.990212414RY,X20X24=0.99303011
RY,X21X22=0.981263124RY,X21X3=0.986632522
RY,X21X4=0.990012342
RY,X3X4=0.991251518
根据上述数据,可以看出,Y与任意者之间都存在复相关关系。
5.1.3汇率与利率的偏相关关系
由于汇率和利率关系比较特殊,在一般情况下,前者波动会引起后者波动,同样后者变化也会引起前者变化,利率又分为贷款利率和存款利率,在分析其关系时,我们往往可以假定贷款利率或者存款利率不变,利用偏相关关系来分析它们三者间的关系。
首先利用相关关系系数公式求出两两间的相关系数,再通过公式,计算利率同贷款利率和存款利率之间的关系,公式如下:
由于不同存款或贷款时间利率不同,所以可以分开讨论,则有(这里汇率我们选择人民币对美元汇率):
六个月内:
ρX5X61=0.317815205ρX5X62=0.004064457ρX61X62=0.701454504
=0.3504
=0.0013
一年到三年:
ρX5X61