MATLAB插值与拟合Word文件下载.docx

上传人:b****5 文档编号:19786567 上传时间:2023-01-10 格式:DOCX 页数:12 大小:20.64KB
下载 相关 举报
MATLAB插值与拟合Word文件下载.docx_第1页
第1页 / 共12页
MATLAB插值与拟合Word文件下载.docx_第2页
第2页 / 共12页
MATLAB插值与拟合Word文件下载.docx_第3页
第3页 / 共12页
MATLAB插值与拟合Word文件下载.docx_第4页
第4页 / 共12页
MATLAB插值与拟合Word文件下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

MATLAB插值与拟合Word文件下载.docx

《MATLAB插值与拟合Word文件下载.docx》由会员分享,可在线阅读,更多相关《MATLAB插值与拟合Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。

MATLAB插值与拟合Word文件下载.docx

y=Xβ+ε

β是p´

1的参数向量;

ε是服从标准正态分布的随机干扰的n´

1的向量;

y为n´

X为n´

p矩阵。

bint返回β的95%的置信区间。

r中为形状残差,rint中返回每一个残差的95%置信区间。

Stats向量包含R2统计量、回归的F值和p值。

例1:

设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。

即y=10+x+ε;

求线性拟合方程系数。

程序:

x=[ones(10,1)(1:

10)’]

y=x*[10;

1]+normrnd(0,0.1,10,1)

[b,bint]=regress(y,x,0.05)

结果:

x=

1

2

3

4

5

6

7

8

9

10

y=

10.9567

11.8334

13.0125

14.0288

14.8854

16.1191

17.1189

17.9962

19.0327

20.0175

b=

 

9.9213

1.0143

bint=

9.7889 

10.0537

0.9930 

1.0357

即回归方程为:

y=9.9213+1.0143x

2. 

多项式曲线拟合函数:

polyfit()

p=polyfit(x,y,n)

[p,s]=polyfit(x,y,n)

x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

矩阵s用于生成预测值的误差估计。

(见下一函数polyval)

例2:

由离散数据

x

.1

.2

.3

.4

.5

.6

.7

.8

.9

y

1.4

1.6

1.9

1.5

拟合出多项式。

x=0:

.1:

1;

y=[.3.511.41.61.9.6.4.81.52]

n=3;

xi=linspace(0,1,100);

z=polyval(p,xi);

%多项式求值

plot(x,y,’o’,xi,z,’k:

’,x,y,’b’)

legend(‘原始数据’,’3阶曲线’)

p=

16.7832 

-25.7459 

10.9802 

-0.0035

多项式为:

16.7832x3-25.7459x2+10.9802x-0.0035

曲线拟合图形:

也可由函数给出数据。

例3:

x=1:

20,y=x+3*sin(x)

x=1:

20;

y=x+3*sin(x);

p=polyfit(x,y,6)

xi=1inspace(1,20,100);

z=poyval(p,xi);

%多项式求值函数

legend(‘原始数据’,’6阶曲线’)

0.0000 

-0.0021 

0.0505 

-0.5971 

3.6472 

-9.7295 

11.3304

再用10阶多项式拟合

程序:

y=x+3*sin(x);

p=polyfit(x,y,10)

xi=linspace(1,20,100);

z=polyval(p,xi);

plot(x,y,'

o'

xi,z,'

k:

'

x,y,'

b'

legend('

原始数据'

'

10阶多项式'

Columns1through7

0.0000 

-0.0000 

0.0004 

-0.0114 

0.1814 

-1.8065 

11.2360

Columns8through11

-42.0861 

88.5907 

-92.8155 

40.2671

可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。

3. 

多项式曲线求值函数:

polyval()

y=polyval(p,x)

[y,DELTA]=polyval(p,x,s)

y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s)使用polyfit函数的选项输出s得出误差估计YDELTA。

它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。

则YDELTA将至少包含50%的预测值。

4. 

多项式曲线拟合的评价和置信区间函数:

polyconf()

[Y,DELTA]=polyconf(p,x,s)

[Y,DELTA]=polyconf(p,x,s,alpha)

[Y,DELTA]=polyconf(p,x,s)使用polyfit函数的选项输出s给出Y的95%置信区间YDELTA。

1-alpha为置信度。

例4:

给出上面例1的预测值及置信度为90%的置信区间。

[p,s]=polyfit(x,y,n)

alpha=0.05;

[Y,DELTA]=polyconf(p,x,s,alpha)

结果:

p=

s=

R:

[4x4double]

df:

normr:

1.1406

Y=

-0.0035 

0.8538 

1.2970 

1.4266 

1.3434 

1.1480 

0.9413

0.8238 

0.8963 

1.2594 

2.0140

DELTA=

1.3639 

1.1563 

1.1589 

1.1352 

1.1202 

1.1352

1.1589 

1.3639

5. 

稳健回归函数:

robust()

稳健回归是指此回归方法相对于其他回归方法而言,受异常值的影响较小。

b=robustfit(x,y)

[b,stats]=robustfit(x,y)

[b,stats]=robustfit(x,y,’wfun’,tune,’const’)

b返回系数估计向量;

stats返回各种参数估计;

’wfun’指定一个加权函数;

tune为调协常数;

’const’的值为’on’(默认值)时添加一个常数项;

为’off’时忽略常数项。

例5:

演示一个异常数据点如何影响最小二乘拟合值与稳健拟合。

首先利用函数y=10-2x加上一些随机干扰的项生成数据集,然后改变一个y的值形成异常值。

调用不同的拟合函数,通过图形观查影响程度。

x=(1:

10)’;

y=10-2*x+randn(10,1);

y(10)=0;

bls=regress(y,[ones(10,1)x])%线性拟合

brob=robustfit(x,y)%稳健拟合

scatter(x,y)

holdon

plot(x,bls

(1)+bls

(2)*x,’:

’)

plot(x,brob

(1)+brob

(2)*x,’r‘)

结果:

bls=

8.4452

-1.4784

brob=

10.2934

-2.0006

分析:

稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。

最小二乘拟合(点线)则受到异常值的影响,向异常值偏移。

6. 

向自定义函数拟合

对于给定的数据,根据经验拟合为带有待定常数的自定义函数。

所用函数:

nlinfit()

[beta,r,J]=nlinfit(X,y,’fun’,betao)

beta返回函数’fun’中的待定常数;

r表示残差;

J表示雅可比矩阵。

X,y为数据;

‘fun’自定义函数;

beta0待定常数初值。

例6:

在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型:

现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。

y

0.49 

16 

0.43 

28 

0.41

18 

0.46 

0.40

10 

0.48 

0.45 

30 

0.47 

20 

0.42 

0.38

32 

12 

0.41 

22 

34 

0.40 

36 

24 

0.36

14 

38 

26 

40 

16 

0.44 

42 

0.39

首先定义非线性函数的m文件:

fff6.m

functionyy=model(beta0,x)

a=beta0

(1);

b=beta0

(2);

yy=a+(0.49-a)*exp(-b*(x-8));

x=[8.008.0010.0010.0010.0010.0012.0012.0012.0014.0014.0014.00... 

16.0016.0016.0018.0018.0020.0020.0020.0020.0022.0022.0024.00... 

24.0024.0026.0026.0026.0028.0028.0030.0030.0030.0032.0032.00...

34.0036.0036.0038.0038.0040.0042.00]'

;

y=[0.490.490.480.470.480.470.460.460.450.430.450.430.430.440.43...

0.430.460.420.420.430.410.410.400.420.400.400.410.400.410.41...

0.400.400.400.380.410.400.400.410.380.400.400.390.39]'

beta0=[0.300.02];

betafit=nlinfit(x,y,'

sta67_1m'

beta0)

betafit=

0.3896

0.1011

即:

a=0.3896,b=0.1011拟合函数为:

2插值问题

在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。

海底探测问题

某公司用声纳对海底进行测试,在5×

5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。

并绘出较细致的海底曲面图。

一、一元插值

一元插值是对一元数据点(xi,yi)进行插值。

1. 

线性插值:

由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。

一般来说,数据点数越多,线性插值就越精确。

yi=interp1(x,y,xi,’linear’) 

%线性插值

zi=interp1(x,y,xi,’spline’) 

%三次样条插值

wi=interp1(x,y,xi,’cubic’) 

%三次多项式插值

yi、zi、wi为对应xi的不同类型的插值。

x、y为已知数据点。

已知数据:

求当xi=0.25时的yi的值。

x=0:

y=[.3.511.41.61.6.4.81.52];

yi0=interp1(x,y,0.025,'

linear'

xi=0:

.02:

yi=interp1(x,y,xi,'

);

zi=interp1(x,y,xi,'

spline'

wi=interp1(x,y,xi,'

cubic'

xi,yi,'

r+'

xi,zi,'

g*'

xi,wi,'

k.-'

原始点'

线性点'

三次样条'

三次多项式'

yi0= 

0.3500

要得到给定的几个点的对应函数值,可用:

xi=[0.2500 

0.3500 

0.4500]

yi=1.2088 

1.5802 

1.3454

(二)二元插值

二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。

一、单调节点插值函数,即x,y向量是单调的。

调用格式1:

zi=interp2(x,y,z,xi,yi,’linear’)

‘liner’是双线性插值(缺省)

调用格式2:

zi=interp2(x,y,z,xi,yi,’nearest’)

’nearest’是最近邻域插值

调用格式3:

zi=interp2(x,y,z,xi,yi,’spline’)

‘spline’是三次样条插值

这里x和y是两个独立的向量,它们必须是单调的。

z是矩阵,是由x和y确定的点上的值。

z和x,y之间的关系是z(i,:

)=f(x,y(i))z(:

j)=f(x(j),y)即:

当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。

如果没有对x,y赋值,则默认x=1:

n,y=1:

m。

n和m分别是矩阵z的行数和列数。

已知某处山区地形选点测量坐标数据为:

x=0 

0.5 

1.5 

2.5 

3.5 

4.5 

y=0 

5.5 

海拔高度数据为:

z=8990878592919693908782

9296989995918986848284

9698959290888584838185

8081828995969392898686

8285879899969788858283

8285899495939291868488

8892939495898786838192

9296979896939584828184

8585818280808185909395

8486819899989796958487

8081858283848790958688

8082818485868382818082

8788899899979698949287

其地貌图为:

对数据插值加密形成地貌图。

.5:

5;

y=0:

6;

z=[8990878592919693908782

8788899899979698949287];

mesh(x,y,z) 

%绘原始数据图

xi=linspace(0,5,50);

%加密横坐标数据到50个

yi=linspace(0,6,80);

%加密纵坐标数据到60个

[xii,yii]=meshgrid(xi,yi);

%生成网格数据

zii=interp2(x,y,z,xii,yii,'

%插值

mesh(xii,yii,zii) 

%加密后的地貌图

holdon 

%保持图形

[xx,yy]=meshgrid(x,y);

plot3(xx,yy,z+0.1,’ob’) 

%原始数据用‘O’绘出

2、二元非等距插值

zi=griddata(x,y,z,xi,yi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 交通运输

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1