基于单片机的电子秤设计文档格式.docx

上传人:b****5 文档编号:19716524 上传时间:2023-01-09 格式:DOCX 页数:29 大小:350.01KB
下载 相关 举报
基于单片机的电子秤设计文档格式.docx_第1页
第1页 / 共29页
基于单片机的电子秤设计文档格式.docx_第2页
第2页 / 共29页
基于单片机的电子秤设计文档格式.docx_第3页
第3页 / 共29页
基于单片机的电子秤设计文档格式.docx_第4页
第4页 / 共29页
基于单片机的电子秤设计文档格式.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

基于单片机的电子秤设计文档格式.docx

《基于单片机的电子秤设计文档格式.docx》由会员分享,可在线阅读,更多相关《基于单片机的电子秤设计文档格式.docx(29页珍藏版)》请在冰豆网上搜索。

基于单片机的电子秤设计文档格式.docx

电子秤重技术从静态称重向动态称重发展;

计量方法从模拟测量向数字测量发展;

测量特点从单参数测量向多参数测量发展,特别是对快速称重的动态称重的研究与应用。

电子秤属于电子衡器的一种,它的发展也遵循这一趋势。

随着时代科技的迅猛发展,微电子学的计算机等现代电子技术的成就给传统的电子测量与仪器带来了巨大的冲击和革命性的影响。

常规的测试仪器仪表和控制装置被更先进的

智能仪器所取代,使得传统的电子测量仪器在远距离、功能、精度及自动化水平定方面发生了巨大变化,并相应的出现了各种各样的智能仪器控制系统,使得科学实验和应用工程的自动化程度得以显著提高。

做为重量测量仪器,只能电子秤在各行各业开始显现其测量准确,测量速度快,易于实时测量和监控的巨大优点,并开始逐渐取代传统型的机械杠杆测量称,成为测量领域主流产品。

电子秤的发展过程与其它事物一样,也经历了由简单到复杂、由粗糙到精密、由机械到几点结合再到全电子化、由单一功能到多功能的过程。

近年来,电子秤已越来越多地参与到数据处理和过程控制中。

现代称重技术的数据系统已成为工艺技术、储运技术、预包装技术、收货业务及商业销售领域中不可缺少的组成部分。

随着称重传感器各项性能的不断突破,为电子秤的发展奠定了基础,国外如美国、西欧等一些国家在20世纪60年代就出现了0.1%称量准确度的电子秤,并在70年代中期约对75%的机械秤进行了机电结合式的电子化改造。

电子秤是日常生活中常用的电子衡器,广泛应用于超市、大中型商场、物流配送中心。

电子秤在结构和原理上取代了以杠杆平衡为原理的传统机械式称量工具。

相比传统的机械式称量工具,电子秤具有称量精度高、装机体积小、应用范围广、易于操作使用等优点,在外形布局、工作原理。

1.2研究方法及工作原理

1.2.1研究方法

电子秤是利用物体的重力作用来确定物体质量(重量)的测量仪器,也可用来确定与质量相关的其它量大小、参数、或特性。

不管根据什么原理制成的电子秤均由以下三部分组成:

承重、传力复位系统

它是被称物体与转换元件之间的机械、传力复位系统,又称电子秤的秤体,一般包括接受被称物体载荷的承载器、秤桥结构等。

称重传感器

即由非电量(质量或重量)转换成电量的转换元件,它是吧支撑力变换成电或者其它形式的适合于计量求值的信号所用的一种辅助手段。

按照称重传感器的结构形式不同,可以分直接位移传感器(电容式、电感式、电位计式等)和应变传感器(电阻应变式、卢表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。

对称重传感器的基本要求是:

输出电量与输入重量保持单值对应,并有良好的线性关系;

有较高的灵敏度;

对被称物体的状态影响小;

能在较差的工作条件下工作;

有较好的频响特性;

稳定可靠。

测量显示和数据输出的载荷测量装置

即处理称重传感器信号的电子线路和指示部件。

这部分习惯上称载荷测量装置或二次仪表。

在数字式的测量电路中,通常包括前置放大、滤波、运算、变换、计数、寄存、控制和驱动显示等环节。

1.2.2工作原理

当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力一电效应,将物体的重量转换成与被称物体重量成一定函数关系的电信号。

此信号由放大电路进行放大、经滤波后再由模/数(A/D)器进行转换,数字信号再送到微处理器的CPU处理,CPU不断扫描键盘和各功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。

运算结果送到内存储器,需要显示时,CPU发出指令,从内存储器中读出送到显示器显示。

1.3系统框图及设计思路

电子秤的设计首先是通过压力传感器采集到被测物体的重量并将其转换成电压信号。

输出电压信号通常很小,需要通过前端信号处理电路进行准确的线性放大。

放大后的模拟电压信号经A/D转换电路转换成数字量被送入到主控电路的单片机中,再经过单片机控制译码显示器,从而显示出被测物体的重量。

称重硬件结构图:

首先放入被测对象,使应变梁产生形变,形成一个很小的电压信号,经过处理电路放大后再经过A/D转换进入单片机分析,在通过键盘确定被测对象的显示要求,最后通过显示器显示出来,如果超重则提供报警功能。

目前,台式电子秤在商业贸易中的使用已相当普遍,单存在较大的局限性:

体积大、成本高、携带不便、应用场受到制约。

现有的便携秤为杆秤或以弹簧、拉伸变形来实现计量的弹簧秤,居民用户使用的基本是杆秤。

弹簧盘秤制造工艺要求较高,弹簧的疲劳问题无法彻底解决,一旦超过弹性限度,弹簧秤就会产生很大误差,以至损坏,影响到称重的准确性和可靠性,只是一种暂时的代用品,也被列入逐渐取消的行列。

微控制器技术、传感器技术的发展和计算机技术的广泛应用,电子产品的更新速度达到了日新月异的地步。

系统的微控制器部分选择了兼容性比较好的51系列单片机,在系统更新换代的时候,只需要增加很少的硬件电路,甚至仅仅删改系统控制程序就能够实现。

综上所述,本设计的主要思路是:

利用压力传感器采集因压力变化产生的电压信号,经过电压放大电路放大,然后再经过模数转换器转换为数字信号,最后把数字信号送入单片机。

单片机经过相应的处理后,得出当前所称物品的重量及总额,然后再显示出来。

1.4国内外研究情况

电子秤的发展过程与其它事物一样,也经历了由简单到复杂、由粗糙到精密、由机械到机电结合再到全电子化,由单一功能到多功能的过程。

随着称重传感器各项性能的不断突破,为电子秤的发展奠定了基础,国外如美国、西欧等一些国家在20世纪60年代就出现了0.1%称量准确度的电子秤,并在70年代中期约对75%的机械秤进行了机电结合式的电子化。

相比传统的机械式称量工具,电子秤具有称量精度高、装机体积小、应用范围广、易于操作使用等优点,在外形布局、工作原理结构和材料上都是全新的计量衡器。

目前市场上使用的测量工具,或者是结构复杂,或者运行不可靠,且成本高,精度稳定性不好,调正时间长,易损件多,维修困难,装机容量大,能源消耗大,生产成本高。

而且目前市场上电子秤产品的整体水平不高,部分小型企业产品质量差且技术力量薄弱,设备不全,缺乏产品的开发能力,产品的质量在低水平徘徊。

因此,有针对性地开发出一套有实用价值的电子秤系统,从技术上克服上述诸多缺点,改善电子秤系统在应用中的不足之处,具有现实意义。

现状:

从通用的各种规格的电子秤到大型的电子称重系统,从单纯的称重、计价到生产过程检测系统的一个测量控制单元,其应用领域在不断地扩大。

根据近年来电子称重技术和电子衡器的发展情况及电子衡器市场的需求,电子衡器总的发展动向为:

小型化、模块化、智能化、集成化;

其技术性能趋向于速率高、准确度高、稳定性高、可靠性高;

其应用性趋向于综合性、组合性。

2硬件电路设计

2.1传感器的选择

我们选择的是应变片式传感器,。

它有结构简单、灵敏度高、动态响应好、可实现非接触测量、具有平均效应等优点。

应变片传感器可用来检测压力、位移以及振动学非典参量。

如图2.1所示。

当电桥输出端接无穷大负载电阻时,可视输出端为开路,此时直流电桥为电压桥,有电压输出。

当忽略电源的内阻时,有分压院里有:

uo=uBD=uAB-uAD(公式2.1)

=E(

)(公式2.2)

=E·

(公式2.3)

当满足条件

时,即

(公式2.4)

Uo=0,即电桥平衡。

式(2.3)称平衡条件。

应变片测量电桥在测量前使电桥平衡,从而使测量时电桥输出电压只与应变片感受的应变所引起的电阻变化有关。

若差动工作,即

(公式2.5)

则电桥输出为

(公式2.6)

应变片式传感器有如下特点:

应用和测量范围广,应变片可制成各种机械量传感器、

分辨力和良民度高,精度较高。

结构轻小,对试件影响小,对复杂黄精适应性强,可在高温、高压、强磁场等特殊环境中使用,频率响应好。

商品化,使用方便,便于实现远距离、自动化测量。

2.2放大电路

称重传感器输出电压振幅范围0~20mV。

而A/D转换的输入电压要求为0~2V,因此放大环节要有100倍左右的增益。

对放大环节的要求是增益可调的(70~150倍),根据本设计的实际情况增益设为100倍即可,零点和增益的温度漂移和时间漂移极小。

按照输入电压20mV,分辨率20000码的情况,漂移要小于1旧。

由于其具有极低的失调电压的温漂和时漂(±

lI.LV),从而保证了放大环节对零点漂移的要求。

残余的一点漂移依靠软件的自动零点跟踪来彻底解决。

稳定的增益量可以保证其负反馈回路的稳定性,并且最好选用高阻值的电阻和多圈电位器。

由称重传感器的称量原理可知,电阻应变片组成的传感器是把机械应变转换成△R/R,而应变电阻的变化一般都很微小,例如传感器的应变片电阻值120Ω,灵敏系数K=2,弹性体存额定载荷作用下产生的应变为l000£,应变电阻相对变化量为:

△R/R=K×

£=2×

1000×

10-6=0.002(公式2.7)

由上式可以看出电阻变化只有0.24Ω,其电阻变化率只有0.2%。

这样小的电阻变化既难以直接精确测量,又不便直接处理。

因此,必须采用转换电路,把应变计的△R/R变化转换成电压或电流变化,但是这个电压或电流信号很小,需要增加增益放大电路来把这个电压或电流信号转换成可以被A/D转换器接收的信号。

在前级处理电路部分,我们考虑可以采用以下几种方案:

方案一:

利用普通低温漂运算放大器构成前级处理电路;

普通低温漂运算放大器构成多级放大器会引入大量噪声。

由于A/D转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。

所以,此种方案不宜采用。

方案二:

主要由高精度低漂移运算放大器构成差动放大器,而构成的前级处理电路;

差动放人器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。

一般说来,集成化仪用放大器具有很高的共模抑制比和输入阻抗,因而在传统的电路设计中都是把集成化仪器放人器作为前置放人器。

然而,绝人多数的集成化仪器放大器,特别是集成化仪器放大器,它们的共模抑制比与增益相关:

增益越高,共模抑制比越大。

而集成化仪器放大器作为心电前置放大器时,由于极化电压的存在,前置放大器的增益只能在几十倍以内,这就使得集成化仪器放大器作为前置放大器时的共模抑制比不可能很高。

有同学试图在前置放大器的输入端加上隔直电容(高通网络)来避免极化电压使高增益的前置放大器进入饱和状态,但由于信号源的内阻高,且两输入端不平衡,隔直电容(高通网络)使等共模干扰转变为差模干扰,结果适得其反,严重地损害了放人器的性能。

为了实现信号的放人,其设计电路如图2.2所示:

前级采用运放Al和A2组成并联型差动放大器。

理论上不难证明,存运算放大器为理想的情况下,并联型差动放人器的输入阻抗为无穷人,共模抑制比也为无穷人。

更值得一提的是,在理论上并联型差动放人器的共模抑制比与电路的外围电阻的精度和阻值无关。

阻容耦合电路放存由并联型差动放大器构成的前级放大器和由仪器放大器构成的后级放大器之间,这样可为后级仪器放大器提高增益,进而提高电路的共模抑制比提供了条件。

同时,南于前置放大器的输出阻抗很低,同时又采用共模驱动技术,避免了阻容耦合电路中的阻、容元件参数不对称(匹配)导致的共模干扰转换成差模干扰的情况发生。

后级电路采用廉价的仪器放大器,将双端信号转换为单端信号输出。

由于阻容耦合电路的隔直作用,后级的仪器放大器可以做到很高的增益,进而得到很高的共模抑制比。

2.3主控制器

2.3.1AT89C51单片机功能特性概述

图2.3AT89C51

主要特性:

与MCS-51兼容

4K字节可编程FLASH存储器

寿命:

1000写/擦循环

数据保留时间:

10年

全静态工作:

0Hz-24MHz

三级程序存储器锁定

128×

8位内部RAM

32可编程I/O线

两个16位定时器/计数器

5个中断源

可编程串行通道

低功耗的闲置和掉电模式

片内振荡器和时钟电路

2.3.2AT89C51主要性能参数

AT89C51单片机特点能与MCS-51兼容,有4K字节可编程闪烁存储器,寿命能够达到1000写/擦循环,数据可以保留时间长达10年,全静态工作:

0Hz-24MHz,三级程序存储器锁定,128×

8位内部RAM,32可编程I/O线,两个16位定时器/计数器,5个中断源,可编程串行通道,低功耗的闲置和掉电模式,片内振荡器和时钟电路。

所以AT89C51符合本次设计的主控芯片。

2.3.3AT89C51引脚功能说明

管脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P0口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;

当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

2.4ADC0809转换

图2.4ADC0809

2.4.1主要特性

 1)8路输入通道,8位A/D转换器,即分辨率为8位。

 2)具有转换起停控制端。

 3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz时) 

4)单个+5V电源供电

5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度

7)低功耗,约15mW。

2.4.2内部结构

ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近寄存器、逻辑控制和定时电路组成。

2.4.3引脚功能

  ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

  IN0~IN7:

8路模拟量输入端。

  2-1~2-8:

8位数字量输出端。

  ADDA、ADDB、ADDC:

3位地址输入线,用于选通8路模拟输入中的一路

  ALE:

地址锁存允许信号,输入,高电平有效。

  START:

A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

  EOC:

A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

  OE:

数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

  CLK:

时钟脉冲输入端。

要求时钟频率不高于640KHZ。

  REF(+)、REF(-):

基准电压。

  Vcc:

电源,单一+5V。

地。

2.4.4ADC0809的工作过程

  首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1