最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx

上传人:b****6 文档编号:19164799 上传时间:2023-01-04 格式:DOCX 页数:19 大小:241.13KB
下载 相关 举报
最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx_第1页
第1页 / 共19页
最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx_第2页
第2页 / 共19页
最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx_第3页
第3页 / 共19页
最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx_第4页
第4页 / 共19页
最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx

《最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx》由会员分享,可在线阅读,更多相关《最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx(19页珍藏版)》请在冰豆网上搜索。

最新人教版七年级数学初一下册 第七章 平面直角坐标系 教学案Word下载.docx

9

10

11

12

m

(2)根据上表写出每一组有序数对(n,m)。

(3)用含有n的代数式表示m:

___________。

【要点归纳】

【拓展训练】

1.用1,2,3可以组成有序数对______对

2.如果一类有序数对(x,y)满足方程x+y=5,则下列数对不属于这类的是______.

(A)(3,2)(B)(2,3)(C)(5,1)(D)(-1,6)

3.我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作___________;

数对(-2,-6)表示________。

4.某人在车间里工作的时间t与工作总量y组成有序数对(t,y),若他的工作效率是不变的,其中两组数对分别为(4,80),(7,y),则y=________。

【总结反思】:

课题7.1.2平面直角坐标系

(1)

认识平面直角坐标系,了解点与坐标的对应关系;

【学习重点】在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数)。

【学习难点】掌握特殊点的坐标的特征。

一、知识链接

1、请画一条数轴,并指出它的三要素。

2、说出下列数轴上的点所表示的数。

AB

二、自主探究

(一)阅读课本,思考:

如何确定平面内的点的位置?

(二)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。

试一试:

请用有序数对来表示A,B,C,D,的位置。

请写出点A,B,C,D,的坐标。

(三)合作交流:

同桌两个同学,一个在上一题平面直角坐标系内点点,另一个同学说出该点的坐标。

你能说出:

(1)原点O的坐标是什么?

(2)X轴和Y轴上的点的坐标有什么特点?

1、在平面直角坐标系中已知下列各点的坐标:

A(-5,3.2)、B(0,-4)、C(-3,-5)、D(4,-2)。

分别说出它们的横坐标和纵坐标。

2、已知P(a,b).

(1)若点P在原点,则a,b;

(2)若点P在X轴上,则a,b;

(3)若点P在Y轴上,则a,b;

3.已知点P(a-1,a2-9)在y轴上,则P点的坐标为。

1.点P(-3,4)到x轴的距离为,到Y轴的距离为。

2.在直角坐标系中,A点的位置是(3,-2),B点的位置是(-5,-2),则连接A、B两点所成的线段与_________平行.

3.点P到x轴的距离为3,到y轴的距离为4,点P的坐标是__________________

4.已知点P(2-a,3a-2)到两轴的距离相等,求P点坐标.

5、已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为.

6、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.

7.已知A(4,3),B(2,0),C(-2,0),求以A,B,C为顶点的三角形的面积

课题7.1.2平面直角坐标系

(2)

了解平面直角坐标系中的各象限及各象限的点的坐标的符号的特点。

(坐标轴上的点不属于任何象限)

【学习重点】根据点的坐标,确定点的位置。

【学习难点】建立平面直角坐标系,确定图形的点的坐标。

一、温故知新

在同一平面直角坐标系中,(3,2),(2,3)表示的是不是同一点?

(3,2),(-3,-2)呢?

阅读课本

平面直角坐标系,两条坐标轴将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限,(quadrant),第二象限,第三象限,第四象限。

坐标轴上的点不属于任何象限。

自己完成例题;

探究:

由此你发现各象限点的坐标的符号什么特点?

例:

已知三角形ABC的三个顶点的坐标分别是A(-5,0),B(-1,4),C(5,0),在平面直角坐标系内画出这个三角形。

解:

【课堂练习】

1.在下图所示的平面直角坐标系中表示下面各点:

A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。

(1)A点到原点O的距离是____个单位长。

(2)连接CE,则直线CE与

轴是什么位置关系?

(3)点F到

轴的距离分别是多少?

2.平面直角坐标系内一点P(a,b)

若a>0,b>0,则点P在;

若a>0,b<0,则点P在;

若a<0,b>0,则点P在;

若a<0,b<0,则点P在;

若a=0,则点P在,若b=0,则点P在。

3.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()

A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)

1、点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为()

A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)

2、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,-2),(3,-1),则第四个顶点坐标为()

A(2,2)B(3,-2)C(3,3)D(2,3)

3.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________________.

4、在平面直角坐标系中,点(-1,

+1)一定在()

A、第一象限  B、第二象限  C、第三象限 D、第四象限

5、已知点P(a,b),ab>0,a+b<0,则点P在()

A.第一象限B.第二象限C.第三象限D.第四象限

6.若

,且点M(a,b)在第二象限,则点M的坐标是()

A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)

7.已知

,则

的坐标为()

A、

B、

C、

D、

课题7.2.1用坐标表示地理位置

【学习目标】1、了解用平面直角坐标系来表示地理位置的意义及主要过程。

【学习重点】2、发展空间观念,培养解决实际问题的能力。

一、自主学习

阅读课本,回答下列问题

1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程为:

(1)建立坐标系,选择一个适当的______为原点,确定x轴、y轴的_______;

(2)确定适当的_______,在坐标轴上标出单位长度;

(3)在坐标平面内画出这些点,写出各点的_______和各个地点的________

2.根据以下条件在图中画出小玲、小敏、小凡家的位置,并标明它们的坐标.

小玲家:

出校门向西走150米,再向北走100米.

小敏家:

出校门向东走200米,再向北走300米.

小凡家:

出校门向南走100米,再向西走300米.

最后向北走250米.

1.从车站向东走400米,再向北走500米到小红家;

从车站向北走500米,再向西走200米到小强家,则()

A.小强家在小红家的正东B.小强家在小红家的正西

C.小强家在小红家的正南D.小强家在小红家的正北

2.由坐标平面内的三点A(1,1),B(3,-1),C(1,-3)构成的△ABC是()

A.钝角三角形B.直角三角形;

C.锐角三角形D.等腰直角三角形

3.已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是()

A.AB>

ACB.AB=AC;

C.AB<

ACD.无法判断

4.在比例尺为1:

20000的地图上,相距3cm的A,B两地的实际距离是________.

1.星期天,李哲、丁琳、张瑞三位同学到大明公园春游时相互走散了.以中心广场为坐标原点,以正东、正北方向为x轴、y轴正方向建立坐标系,他们对着景区示意图通过电话相互报出了他们的位置.

李哲:

“我这里的坐标是(-300,200).”丁琳:

“我这里的坐标是(-200,-100).”

张瑞:

“我这里的坐标是(200,-200).”

你能在下图中标出他们的位置吗?

如果他们三人要到某一景点(包括东门、西门、南门)集合,三人所行路程之和最短的选择是哪个景点?

2.葛亮同学利用暑假参观了花峪村果树种植基地(如图).他从苹果园出发,沿(1,3),(-3,3),

(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,用线段依次连接他经过的地点,看看能得到什么图形

课题7.2.2用坐标表示平移

(1)

经历点的坐标变化与图形变化之间关系的探索过程,感受并了解图形的平移变化与点的坐标变化之间的关系。

【学习重点】通过画图、观察、分析点的坐标变化与图形变化之间的关系;

【学习难点】用数学语言描述这种关系。

一、自主探究

1.建立直角坐标系,描出点P(4,2)

(1)过点P作直线L1,平行于X轴。

请在直线L1上任取几点,并写出它们的坐标。

由此你发现了什么?

平行于X轴的直线上的点的。

(2)过点P作直线L2平行于Y轴,则直线L2上的点的坐标有什么特点?

平行于Y轴的直线上的点的横坐标相等。

2.将点A(-3,3)、B(4,5)分别作以下平移,请在图上标出平移后的点,并写出它们的坐标

A(-3,3)向右平移5个单位→()

B(4,5)向左平移5个单位→()

A(-3,3)向上平移3个单位→()

B(4,5)向下平移3个单位→()

观察:

平移前后的点的坐标的变化,你能从中发现什么规律?

归纳:

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点,将点(x,y)向上(或向下)平移b个单位长度,可以得到对应点。

已知三角形ABC的三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)

(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1,B1,C1各点,所得三角形ABC的大小,形状和位置有什么变化?

(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2,依次连接A2,B2,C2各点,所得三角形A2B2C2的大小与三角形ABC的大小,形状和位置有什么关系?

1.思考:

已知三角形ABC的三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)

(1)如果将三角形ABC三个顶点的“横坐标都加3,纵坐标都不变”或“纵坐标都加2,横坐标都不变”,那么你能得出什么结论?

(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?

1.已知点A(-2,-3),分别求出点A经平移后得到的坐标:

(1)向上平移3个单位长度

(2)向下平移3个单位长度

(3)向左平移2个单位长度

(4)向右平移4个单位长度

(5)向上平移5个单位长度,再向右平移2个单位长度

2.在平面直角坐标中,点A(1,2)平移后的坐标是A'(-3,3),按照同样的规律平移其它点,则()变换符合这种要求.

A.(3,2)→(4,-2)B.(-1,0)→(-5,-4)

C.(2.5,

)→(-1.5,

)D.(1.2,5)→(-3.2,6)

3.线段AB的两个端点坐标为A(1,3)、B(2,7),线段CD的两个端点坐标为C(2,-4)、D(3,0),则线段AB与线段CD的关系是()

A.平行且相等B.平行但不相等C.不平行但相等D.不平行且不相等

4.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________

1.将点P(-3,2)向下平移3个单位,向左平移2个单位后得到点Q(x,y),则xy=__________

2.将点P(

-5)向左平移

个单位,再向上平移4个单位后得到的坐标为.

3.将点P(m-2,n+1)沿x轴负方向平移3个单位,得到

(1-m,2),求点P坐标

课题7.2.2用坐标表示平移

(2)

掌握在同一平面直角坐标系中,用坐标表示平移变换的方法。

通过研究

【学习重点】坐标的关系,进一步使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换。

平移△ABC,使点A移动到点A'

,画出平移后的△A'

B'

C'

(1)新图形与原图形的形状和大小有什么关系?

(2)连接各组对应点的线段有什么关系?

1.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()

A、向右平移了3个单位B、向左平移了3个单位

C、向上平移了3个单位D、向下平移了3个单位

2.已知长方形ABCD中,A(-4,1),B(0,1),C(0,3),求点D的坐标.

3.已知四边形ABCD的各顶点坐标分别是A(-2,0),B(4,0),C(3,4),D(-1,2),

(1)求这个四边形的面积.

(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标都增加2,所得的四边形面积又是多少?

1.

(1)请在下图所示的方格纸中,将ΔABC向上平移3格,再向右平移6格,得ΔA1B1C1.

(2)请在方格纸的适当位置画上坐标轴,在你建立直角坐标系中,点C的坐标是________(一个小正方形的边长为一个单位长度).

2.如图,ΔAOB是由ΔA1O1B1平移后得到的,已知点A1的坐标为(-3,-1).

(1)求O1、B1的坐标;

(2)指出ΔA1O1B1经过怎样的平移得到ΔAOB?

(3)求ΔAOB的面积.

课题第7章平面直角坐标系的复习

一、画出本章知识结构图

二、平行于坐标轴的直线的点的坐标特点:

平行于x轴(或横轴)的直线上的点的纵坐标相同;

平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:

第一、三象限角平分线上的点的横纵坐标相同;

第二、四象限角平分线上的点的横纵坐标互为相反数。

四、与坐标轴、原点对称的点的坐标特点:

关于x轴对称的点的横坐标相同,纵坐标互为相反数

关于y轴对称的点的纵坐标相同,横坐标互为相反数

关于原点对称的点的横坐标、纵坐标都互为相反数

五、特殊位置点的特殊坐标:

坐标轴上点P(x,y)

点P(x,y)在各象限的坐标特点

象限角平分线上的点

X轴

Y轴

原点

第一象限

第二象限

第三象限

第四象限

第一、三象限

第二、四象限

(x,0)

(0,y)

(0,0)

x>0

y>0

x<0

y<0

(m,m)

(m,-m)

六、用坐标表示平移:

见下图

基础练习

1.在平面直角坐标系内,下列说法错误的是()

A原点O不在任何象限内B原点O的坐标是0

C原点O既在X轴上也在Y轴上D原点O在坐标平面内

2.X轴上的点P到Y轴的距离为2.5,则点P的坐标为( )

A、(2.5,0) B、(-2.5,0) C、(0,2.5)D、(2.5,0)或(-2.5,0)

3.点(4,3)与点(4,-3)的关系是()

(A)关于原点对称(B)关于x轴对称

(C)关于y轴对称(D)不能构成对称关系

4.点P的坐标是(2,-3),则点P在第_________象限。

5.若点P(x,y)的坐标满足xy﹥0,则点P在第_________象限;

 若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P在第________象限。

6.若点A的坐标是(-3,5),则它到x轴的距离是__________,到y轴的距离是__________。

.

7.点p到x轴、y轴的距离分别是2、1,则点p的坐标可能为_________

8.已知点P(x,y)在第四象限,且

,则P点的坐标是_________。

9.点P(m+2,m-1)在y轴上,则点P的坐标___________

10.点P(x,y)满足xy=0,则点P在__________

11.点A(-1,-3)关于x轴对称点的坐标是_______;

关于原点对称的点坐标是__________。

1、点P(a-1,

-9)在x轴负半轴上,则P点坐标是_________。

2、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为______。

3、若点(2a-1,a+3)在第一,三象限的两个坐标轴的夹角平分线上,则a=

________。

4、已知点P坐标为(2+a,2a-7),且点P到两坐标轴的距离相等,则a=___________。

5、如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?

将它沿y轴正方向平移4个单位长度呢?

分别画出平移后的图形.

第7章《平面直角坐标系》检测试卷(满分100分)

姓名班级

一、选择题(每小题4分,共40分)

1.在平面直角坐标系中,点(-3,4)在(  )

A、第一象限  B、第二象限  C、第三象限  D、第四象限

2.若

3.已知点A(4,-3)到

轴的距离为(  )

A、4 B、-4C、3 D、-3

4.若y轴上的点P到x轴的距离为5,则点P的坐标为()

A、(5,0)B、(5,0)或(–5,0)C、(0,5)D、(0,5)或(0,–5)

5.已知M(1,-2),N(-3,-2)则直线MN与x轴,y轴的位置关系分别为(  )

A.相交,相交B.平行,平行

C.垂直相交,平行D.平行,垂直相交

6.在平面真角坐标系中,点(-1,-2)在()

7.在平面直角坐标系中,点(-1,

8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()

A、(2,2)B、(3,2)C、(3,3)D、(2,3)

9.三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为

A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()

A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)

10.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()

二、填空题(每小题4分,共32分)

11.如果(6、6)表示电影票上“6排6号”,那么8排6号表示为,

(3,4)的含义是;

12.点P(4,a-2)到两坐标轴的距离相等,则a=;

13.点A(-1,2)关于

轴的对称点坐标是;

点A关于x轴对称的点的坐标为,点A关于原点的对称点的坐标是。

14.点A(x,

)在第三象限,则点B(-x,

-1)在第象限。

15.A(-3,-2)、B(2,-2)、C(-2,1)、D(3,1)是坐标平面内的四个点,则线段AB与CD的关系是__________,点B到CD的距离为。

16由原点O(0,0)A(-2,0)B(-2,3)三点围成的三角形的面积为。

17.已知线段MN=2,MN║y轴,若点M坐标为(-1,2),则N点坐标为。

18.已知点A(a,0)和点B(0,4)两点,且连接这两点所成的直线AB与坐标轴围成的三角形的面积等于8,则a的值是________________

三、解答题(共28分)

19.(10分)图中标明了李明同学家附近的一些地方。

(1)根据图中所建立的平面直角坐标系,写出学校,邮局的坐标。

(2)某星期日早晨,李明同学从家里出发,沿着(-2,-1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方。

(3)连接他在

(2)中经过的地点,你能得到什么图形?

20.(10分在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).

(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB中点的坐标与点A,B的坐标之间有什么关系?

对线段AC中点和点A,C的坐标及线段CD中点和点C,D的坐标也成立吗?

(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标.

(3)将A,B二点及C,D二点向上平移4个单位长度

后,

写出得到的线段A’B’,C’D’中点,你能发现什么

规律吗?

21.(10分如图,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1