整理基于PLC的混凝土搅拌机Word格式.docx

上传人:b****6 文档编号:17870842 上传时间:2022-12-11 格式:DOCX 页数:47 大小:625.26KB
下载 相关 举报
整理基于PLC的混凝土搅拌机Word格式.docx_第1页
第1页 / 共47页
整理基于PLC的混凝土搅拌机Word格式.docx_第2页
第2页 / 共47页
整理基于PLC的混凝土搅拌机Word格式.docx_第3页
第3页 / 共47页
整理基于PLC的混凝土搅拌机Word格式.docx_第4页
第4页 / 共47页
整理基于PLC的混凝土搅拌机Word格式.docx_第5页
第5页 / 共47页
点击查看更多>>
下载资源
资源描述

整理基于PLC的混凝土搅拌机Word格式.docx

《整理基于PLC的混凝土搅拌机Word格式.docx》由会员分享,可在线阅读,更多相关《整理基于PLC的混凝土搅拌机Word格式.docx(47页珍藏版)》请在冰豆网上搜索。

整理基于PLC的混凝土搅拌机Word格式.docx

运输设备、料斗设备、称量设备、搅拌设备和辅助设备,如图1-1:

图1-1混凝土搅拌站示意图

1)运输设备

运输设备包括骨料运输设备、水泥输送设备以及水泵等。

骨料运输设备有皮带机、拉铲、抓斗和装载机等,其中皮带机是搅拌装置中最常用的骨料运输设备,。

水泥输送设备和添加剂输送设备由斗式提升机和螺旋输送机组成。

2)料斗设备

料斗设备由贮料斗、卸料设备(闸门、给料机等)和一些其它附属装置组成。

料斗设备在生产中起着中间仓库的作用,用来平衡生产。

在混凝土搅拌装置中,用料斗设备配合自动秤进行配料。

所以,它是工艺设备的组成部分,并不是大宗物料的贮存场所。

根据制作贮料斗所用的材料不同,贮料斗分为钢贮斗、钢筋混凝土贮斗、木贮斗等;

从外形上分,常用的有方形和圆形。

圆形贮斗又叫筒仓。

给料机和闸门都是贮料斗的卸料设备。

闸门控制贮料斗卸料口的开启和关闭的,大多是气动的,其构造简单,卸料能力大,但是只有当物料是完全松散状态时,才能比较均匀地控制料流。

而采用给料机卸料时,就比较容易控制均匀地卸料,给料机都是电动的。

闸门的类型很多,但在混凝土搅拌装置中最常用的是扇形闸门,它由压缩空气缸来操纵,骨料(石子和砂)都是采用闸门给料。

3)称量设备

称量配料设备是混凝土生产过程中的一项重要工艺设备,它控制着各种混合料的配比。

称量配料的精度对混凝土的强度有着很大的影响。

因此,精确、高效的称量设备不仅能提高生产率,而且是生产优质高强混凝土的可靠保证。

一套完整的称量设备包括贮料斗、给料设备(闸门或给料机)和称量设备等。

对称量设备的要求,首先是准确,其次是快速。

称量的不精确将对混凝土的强度产生很大的影响,同时又要满足一定的生产率。

称量设备从构造上可分为杠杆秤和电子秤等,其中,杠杆秤已经被淘汰。

为了适应各种不同的物料,秤斗在构造上略有不同。

水泥秤斗是圆形的,骨料秤斗是长方形的,而水等液体的秤斗是圆形的,斗门设有橡皮垫,以保证密封。

传感器的装设,电子秤的秤斗采用三点悬挂,在每套悬挂装置的中部各装有一个传感器。

4)搅拌设备

即一般的混凝土搅拌机,没有提升装置和供水装置。

其设计技术很成熟,在搅拌站设计中,一般采用标准搅拌机。

例如,目前国内厂家基本都使用双卧轴强制式搅拌机,此搅拌机搅拌能力强,搅拌均匀、迅速,生产率高,对于干硬性、塑性及各种配比的混凝土,均能达到良好的搅拌效果。

1.1.2电控系统的构成

电控系统由PLC、智能元件、传感器、中间继电器和执行机构等构成,如图1-2:

图1-2电控系统构成

1、PLC采用三菱FX2n系列产品。

它具有兼容性好和可靠性高的特点,为搅拌站的整个电控系统带来了高质高品的性能,也有利于用户今后对搅拌站的更新与扩展,我设计的混凝土搅拌机的PLC外部接线图2.7中2-4。

2、智能元件主要是指集显示、变送和控制于一体的配料控制器。

它有一个0~5V的模拟输出接口板,其模拟部分精度适合于0.2%,0.1%、0.05%包装秤使用。

3、传感器主要包括称重传感器和行程开关等。

4、执行机构包括骨料放料电磁法阀、水泥放料电磁法阀、水泵阀门、添加剂放料电磁阀、送料电机、搅拌电机等。

1.1.3称重传感器的选择

混凝土搅拌站控制系统主要采集的是各种物料的重量信号,故本系统选用的是压力传感器。

压力传感器是称重系统中的重要组成部分,由各种压力敏感元件将被测物重量信号转换成容易测量的电信号输出,给称重仪表显示重量值,供控制或报警等使用。

影响称重传感器选型的因素:

①称重传感器选型应考虑过负荷因素

②可靠性

③传感器的防护等级

④搅拌站的规模和工作类型

⑤称重传感器的准确度

称重传感器的选型应充分考虑以上一些因素外,还应尽可能兼顾结构简单、体积小、重量轻、价格便宜、易于维修、易于更换等条件。

工程机械搅拌设备用称重传感器的选型既要考虑混凝土搅拌楼站称重系统的基本要求,又要兼顾称重传感器的运行环境,还要削弱那些对称重传感器有重要影响的因素,合理地选择使用传感器。

根据不同类型和规模的搅拌设备选用相应的传感器。

混凝土搅拌站要求的传感器额定载荷从1kg~4000kg不等,骨料传感器的称量范围最大,一般为50kg~4500kg;

外加剂传感器的额定载荷最小,一般不超过50kg。

综合分析了传感器的量程和范围、线性度、灵敏度和分辨率后,并且根据搅拌站中称重传感器的运行环境,选用的是HL-F

(1)型方悬臂梁高精度压力传感器,如图1-3:

图1-3HL-F

(1)型方悬臂梁压力传感器

F型传感器具有0.05%F.S的精度等级、2mv/v的灵敏度、0.05%F.S的非线性、士0.05%F.S/30min的蠕变和蠕变恢复、0.05%F.S的滞后和重复性、0.02%F.S/100℃的零点输出温度影响和额定输出温度影响、15V(DC)的最大工作电压,其额定载荷则为1~20T。

F型传感器采用剪切结构,抗偏载、抗侧向能力强,具有动态响应快、综合精度高、防尘、防潮、防水性能好的特点。

特别适合于恶劣环境,如建筑、水利、化工、电力、港口等行业的工程机械,如搅拌站、打桩机、配料秤、料斗秤等。

1.2混凝土搅拌站控制系统设计

1.2.1控制系统设计的基本原则及步骤

任何一种控制系统都是为了实现被控对象(生产设备或生产过程)的工艺要求,以提高生产效率和产品质量。

再设计控制系统时,应遵循以下基本原则:

1最大限度地满足被控对象的控制要求。

设计前,要深入现场进行调查研究,收集资料,并与机械部分的设计人员和实际操作人员密切配合共同拟定电气方案,协同解决实际中出现的各种问题。

2在满足控制要求的前提下,力求使控制系统简单、经济、使用及维护方便。

监控界面友好,简洁明快。

3保证控制系统的安全、可靠。

4考虑到生产的发展和工艺的改进,在选择PLC容量及MCGS监控点时,应该留有余量。

控制系统设计的一般步骤如图1-4所示:

图1-4PLC控制系统设计流程图

1.2.2PLC的工作原理

PLC采用循环扫描的工作方式,其扫描过程如图1-5所示。

图1-5PLC循环扫描工作方式

这个工作过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。

全过程扫描一次所需的时间称为扫描周期。

内部处理阶段,PLC检查CPU模块的硬件是否正常,复位监视定时器等。

在通信操作服务阶段,PLC与一些智能模块通信、响应编程器键入的命令,更新编程器的显示内容等,当PLC处于停(STOP)状态时,只进行内部处理和通信服务操作等内容。

在PLC处于运行(RUN)状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。

①输入处理

输入处理也叫输入采样。

在此阶段,顺序读入所有输入端子的通断状态,并将读入的信息存入内存中所对应的映像寄存器。

在此输入映像寄存器被刷新接着进入程序执行阶段。

在程序执行时,输入映像寄存器与外界隔离,即使输入信号发生变化,其映像寄存器的内容也不发生变化,只有在下一个扫描周期的输入处理阶段才能被读入信息。

②程序执行

根据PLC梯形图程序扫描原则,按先左后右先上后下的步序,逐句扫描,执行程序。

但遇到程序跳转指令,则根据跳转条件是否满足来决定程序的跳转地址。

从用户程序涉及到输入输出状态时,PLC从输入映像寄存器中读出上一阶段采入的对应输入端子状态,从输出映像寄存器读出对应映像寄存器的当前状态,根据用户程序进行逻辑运算,运算结果再存入有关器件寄存器中,对每个器件而言,器件映像寄存器中所寄存的内容,会随着程序执行过程而变化。

③程序处理

程序执行完以后,将输出映像寄存器,即器件映像寄存器中的Y寄存器的状态,在输出处理阶段转存到输出锁存器,通过隔离电路,驱动功率放大电路,使输出端子向外界输出控制信号,驱动外部负载。

PLC的扫描既可按固定的顺序进行,也可按用户程序所指定的可变顺序进行。

这不仅因为有的程序不需要每扫描一次就执行一次,而且也因为在一些大系统中需要处理的I/O点数多,通过安排不同的组织模块,采用分时分批扫描的执行方法,可缩短循环扫描的周期和提高控制的实时响应性。

循环扫描的工作方式是PLC的一大特点,也可以说PLC是“串行”工作的,这和传统的继电器控制系统“并行”工作有质的区别。

PLC的串行工作方式避免了继电器控制系统中触点竞争和时序失配的问题。

由于PLC是扫描工作过程,在程序执行阶段即使输入发生了变化,输入状态映像寄存器的内容也不会变化,要等到下一周期的输入处理阶段才能改变。

暂存在输出映像寄存器中的输出信号,等到一个循环周期结束,CPU集中将这些输出信号全部输送给输出锁存器。

由此可以看出,全部输入输出状态的改变需要一个扫描周期。

换言之,输入输出的状态保持一个扫描周期。

扫描周期是PLC一个很重要的指标,小型PLC的扫描周期一般为十几毫秒到几十毫秒。

PLC的扫描时间取决于扫描速度和用户程序长短。

毫秒级的扫描时间对于一般工业设备通常是可以接受的,PLC的响应滞后是允许的。

但是对某些I/O快速响应的设备,则应采取相应的措施。

如选用高速CPU,提高扫描速度,采用快速响应模块、高速计数模块以及不同的中断处理等措施减少滞后时间。

影响I/O滞后的主要原因有:

输入滤波器的惯性;

输出继电器接点的惯性;

程序执行的时间;

程序设计不当的附加影响等。

1.2.3可编程控制器的选用

进行PLC选型时,应该从以下几个方面进行考虑:

1)I/O点数问题

当控制对象I/O点在60点之内,I/O点数比为3:

2时选用整体式(小型)PLC较为经济;

当控制对象I/O点在100-300点左右,选用中小型模块式的较为合理;

当控制对象I/O点在500点以上时就必须选用大型PLC。

2)I/O类型问题

I/O类型也是决定PLC选型的重要因素之一,一般而言,多数小型PLC只具有开关量I/O;

PID,A/D,D/A、位控功能一般只有大、中型PLC才有。

3)联网通信问题

联网通讯是影响PLC选型的重要因素之一,多数小型机提供较简单的RS-232通讯口,少数小型PLC没有通讯功能。

而大型PLC一般都有各种标准的通信模块可供选择。

4)系统响应时间问题

系统响应时间也是影响PLC选型的重要因素之一。

一般而言,小型PLC扫描时间为10-20ms/kb;

中型PLC扫描时间在10ms/kb以下;

大型PLC扫描时间在1ms/kb以下,而系统响应时间约为2倍的扫描周期。

5)可靠性问题

应从系统的可靠性角度,决定PLC的类型和组网形式,比如对可靠性要求极高的系统,可考虑选用双CPU型PLC或冗余控制系统/热备用系统。

6)程序存贮器问题

在PLC选型过程中,PLC内存容量、型式也是必须考虑的重要因素。

通常的计算方法是:

I/O点数×

8(开关量)+100×

模拟量通道数(模拟量)+120×

(1+采样点数×

0.25)(多路采样控制)。

进行PLC选型时,不要盲目地追求过高的性能指标。

另外,I/O点数,存贮容量应留有一定的余量以便实际工作中的调整。

确定PLC的型号以后,就必须对各种模块进行选型,开关量模块的选型主要涉及到如下几个问题:

①外部接线方式问题。

I/O模块一般分为独立式、分组式和汇点式。

通常,独立式的点均价格较高,如果实际系统中开关量输入信号之间不需隔离可考虑选择后两种。

②点数问题。

前面所说,点数是影响PLC选型的重要因素,同样在进行I/O模块的选型时也必须根据具体点数的多少选择恰当的I/O模块。

一般而言,点数多的点均价就低。

③开关量输入模块。

通常的开关量输入模块类型有有源输入、无源输入、光电接近传感器等输入。

进行开关量输入模块的选型时必须根据实际系统运行中的要求综合考虑。

④开关量输出模块。

通常的开关量输出模块类型有继电器输出、可控硅输出和晶体管输出。

在开关量输出模块的选型过程中,必须根据实际系统运行要求及要求输出的电压等级进行相应的选型。

本系统中的称重系统主要为电子秤,它们所提供的模拟量和其它一些安全监测传感器所提供的开关量,作为PLC准确控制的依据。

模拟输入量包括砂料、石料等重量。

开关输入量有:

系统开关按钮;

搅拌机(翻斗门)的上限位、下限位;

沙料箱、石料箱闸门开关;

各种机器故障;

报警销铃;

手动回零等。

PLC的开关量输出有:

搅拌机、石料输送机、沙料输送机、水泥螺旋输送机、水泵、添加剂螺旋输送机、翻斗机、传送带等。

这些信号经功率放大后驱动相应的执行机构。

本系统需要配置的I/O点如下:

19个开关量输入;

22个开关量输出。

根据对上述控制任务的分析,本项目选择了微软公司研发的的模块化中小型PLC系统FX2n,它能满足中等性能要求的应用,应用领域相当广泛。

其模块化、无排风扇结构、和易于实现分布,易于用户掌握等特点使得它成为各种从小规模到中等性能要求控制任务的方便又经济的方案。

FX2n系列所具有的多种性能递增的CPU和丰富的且带有许多方便功能的I/O扩展模块,使用户可以完全根据实际应用选择合适的模块。

当任务规模扩大并且愈加复杂时,可随时使用附加的模块对PLC进行扩展。

FX2n所具备的高电磁兼容性和强抗振动,抗冲击性,更使其具有最高的工业环境适应性。

此外,FX2n系列PLC还具有模块点数密度高,结构紧凑,性价比高,性能优越,装卸方便等优点。

第二章混凝土搅拌站PLC程序设计

2.1混凝土搅拌站PLC程序设计思想

为了使PLC完成混凝土搅拌站整个生产过程的现场控制功能,PLC需要采集各秤的重量信号及其它传感器和行程开关提供的开关量信号,并对此进行处理后,输出对电磁阀、电动机等各执行机构的控制信号,其具体细节如下:

1)石料斗秤、沙料斗秤等由称重传感器感应的信号分别经称重变送器进入PLC。

由于变送器输出的是并行BCD码,所以需经过程序转换成二进制码,存储在PLC的数据寄存器中。

然后经过PLC程序处理.

2)各秤斗称量时,达到设定值时停止给料。

3)由于秤斗上粘附的原料使称重产生偏差,所以需要进行去皮处理。

去皮时,PLC记下此时的重量,此重量即为基准零点。

在称量时用总重量减去基准零点值,得到的就是原料的准确重量。

4)考虑到有可能因突然停电造成配料停止,为了不使已经配好的原料浪费,己经配好的原料的重量需要具有停电保护功能,所以在程序中,把这些重量信号存在可断电保持的数据寄存器中。

5)由于搅拌站运行过程中各送料机及搅拌机等难免不出故障,因此应设计故障报警程序。

2.2混凝土搅拌装置的工艺流程

搅拌站进行混凝土生产时,首先将骨料分别装入各自料仓,然后打开石料和砂料的给料阀门分别将骨料投入到秤斗进行称量,秤斗中的骨料不断增加直到电子秤指示到所要求的重量才控制下料阀门停止投料,然后启动平皮带和斜皮带将骨料卸入集料斗。

在骨料配料的同时,搅拌机也开始搅拌,因为同时在利用定时器进行水泥、所需水及外加剂的计量。

在混凝土所需的各种材料计量完毕后,控制集料斗和各秤斗开门,以把各种材料装入搅拌机进行搅拌。

在搅拌机运行了规定的时间后,打开搅拌机的门进行卸料(搅拌站的门先半开,再全开),完成混凝土生产的一个循环。

在石料、砂料的称重计量时,系统用分别控制两个门进行快速粗略和慢速精确的计量,以减少称量时间和称量精度。

同理,对水的计量亦采用水粗称阀和水精称阀进行控制,而水泥、粉煤灰和防冻剂等添加剂则由计量螺旋机从各自料仓送入各自秤斗进行计量。

由于整台设备生产的连续性较强,控制系统中,每一个动作的前后时序性都有严格的要求,且到达某个状态时,必须保证与这一状态有关的动作全部完成,才可以进入下一个状态,因此必须通过设备上安装的限位开关和传感器对各执行机构的状态进行监控。

2.3混凝土搅拌站工作原理

混凝土搅拌站分为四个部分:

砂石给料、粉料(水泥、粉煤灰、膨胀剂等)给料、水与外加剂给料、传输搅拌与存储.其工作流程为2.8中的程序流程图,搅拌机控制系统上电后,进入人-机对话的操作界面,系统进行初始化处理,其中包括配方号、混凝土等级、坍落度、生产方量等.根据称重对各料仓、计量斗进行检测,输出料空或料满信号,提示操作人员确定是否启动搅拌控制程序.启动砂、石皮带电机进料到计量斗;

打开粉煤灰、水泥罐的蝶阀,启动螺旋机电机输送粉煤灰、水泥到计量斗;

开启水仓和外加剂池的控制阀使水和外加剂流入计量斗.计量满足设定要求后开启计量斗斗门,配料进入已启动的搅拌机内搅拌混合,到设定的时间打开搅拌机门,混凝土进入己接料的搅拌车内.

2.4混凝土搅拌站控制要求

1.先按启动按钮,循环开始指示灯亮。

再按手动开始按钮,搅拌机处于上限位且石料箱和沙料箱闸门开。

2.搅拌机开、添加剂螺旋输料机开、水泥螺旋输料机开、水泵电机开、沙料输送机开、石料输送机开。

3.其中添加剂螺旋输料机开计时30S、水泥螺旋输料机开计时1800S、水泵电机开计时3000S,这些时间一到所有的配料都放入搅拌机搅拌3000S,配料指示灯亮,10S后自动灭,搅拌时间到搅拌机停止,翻斗机下翻卸混凝土,下翻到下翻限位,翻斗机停止,开始计时1200S,时间一到搅拌机上升,上升到上限位,从而一次循环结束指示灯亮,亮10S后自动灭。

2.5位存储区(M)的使用概况

表2-1位存储区(M)的使用概况

位存储区

控制信号

M0

循环开始完毕信号

M16

沙料和石料都放搅拌机搅拌完毕信号

M1

石料箱放料完信号

M17

翻斗机停止信号

M2

沙料箱放料完信号

M20

石料传感器完毕信号

M3

关闭传送带信号

M21

M4

沙料和石料都放搅拌机信号

M30

闪烁信号

M5

水泥输送完毕信号

M31

搅拌机故障消铃信号

M6

水泵停止送水信号

M32

石料输送机故障消铃信号

M10

添加剂输送完毕信号

M33

沙料输送机故障消铃信号

M11

所有物料配制完毕信号

M34

水泥螺旋输送机故障消铃信号

M12

配料完毕指示灯自动灭信号

M35

水泵故障消铃信号

M13

完成一次循环指示灯信号

M36

添加剂螺旋输送机故障消铃信号

M14

石料输送完信号

M37

翻斗机故障消铃信号

M15

沙料输送完信号

以上表格中列出了程序编写过程中使用到的主要位存储区及其控制的信号。

2.6混凝土搅拌站I/O分配表

表2-2混凝土搅拌站输入/输出地址表

输入值

输出值

名称

代号

输入点

输出点

启动开始

SB1

X000

循环开始信号灯

LD1

Y000

手动开始

SB2

X001

搅拌机

KM1

Y001

执行完本次循环后停止

SB3

X002

石料输送机

KM2

Y002

紧急停止

SB4

X003

沙料输送机

KM3

Y003

搅拌机下限位

SQ5

X004

水泥螺旋输送机

KM4

Y004

搅拌机上限位

SQ6

X005

水泵

KM5

Y005

石料箱闸门状态

SQ7

X006

添加剂螺旋输送机

KM6

Y006

沙料箱闸门状态

SQ8

X007

翻斗机下翻

KM7

Y007

石料重量(石料重量传赶器输入

SQ9

X010

翻斗机上翻

KM8

Y010

沙料重量(沙料重量传感器输入)

SQ10

X011

传送带

KM9

Y011

报警电路试灯、试铃

SB11

X017

石料箱放料闸门线圈

KM10

Y012

消铃按钮

SB12

X020

沙料箱放料闸门线圈

KM11

Y013

搅拌机故障

SB13

X021

所有配料都放入搅拌机指示灯

LD2

Y014

石料输送机故障

SB14

X022

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1