苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx

上传人:b****5 文档编号:17159814 上传时间:2022-11-28 格式:DOCX 页数:12 大小:92.32KB
下载 相关 举报
苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx_第1页
第1页 / 共12页
苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx_第2页
第2页 / 共12页
苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx_第3页
第3页 / 共12页
苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx_第4页
第4页 / 共12页
苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx

《苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx》由会员分享,可在线阅读,更多相关《苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx(12页珍藏版)》请在冰豆网上搜索。

苏教版高中数学苏教版必修一学案221 函数的单调性一Word格式.docx

(2)单调区间D⊆定义域I.

(3)遵循最简原则,单调区间应尽可能大.

类型一 求单调区间并判断单调性

例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是单调增函数还是单调减函数?

反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;

当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;

在单调区间D上函数要么是单调增函数,要么是单调减函数,不能二者兼有.

跟踪训练1 写出函数y=|x2-2x-3|的单调区间,并指出单调性.

类型二 证明单调性

命题角度1 证明具体函数的单调性

例2 证明f(x)=

在其定义域上是单调增函数.

反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x1,x2且x1<

x2的条件下,转化为确定f(x1)与f(x2)的大小,要牢记五大步骤:

取值→作差→变形→定号→小结.

跟踪训练2 求证:

函数f(x)=x+

在[1,+∞)上是单调增函数.

命题角度2 证明抽象函数的单调性

例3 已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>

0时,f(x)>

1.求证:

函数f(x)在R上是单调增函数.

反思与感悟 因为抽象函数不知道解析式,所以不能代入求f(x1)-f(x2),但可以借助题目提供的函数性质来确定f(x1)-f(x2)的大小,这时就需要根据解题需要对抽象函数进行赋值.

跟踪训练3 已知函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·

f(n),且当x>

0时,0<

f(x)<

f(x)在R上是单调减函数.

类型三 单调性的应用

命题角度1 利用单调性求参数范围

例4 若函数f(x)=

是定义在R上的单调减函数,则a的取值范围为________.

反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要保证在接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.

跟踪训练4 已知函数f(x)=x2-2ax-3在区间[1,2]上单调,则实数a的取值范围为________________.

命题角度2 用单调性解不等式

例5 已知y=f(x)在定义域(-1,1)上是单调减函数,且f(1-a)<

f(2a-1),求a的取值范围.

反思与感悟 若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;

由f(x1),f(x2)的大小,可得x1,x2的大小.

跟踪训练5 在例5中若函数y=f(x)的定义域为R,且为单调增函数,f(1-a)<

f(2a-1),则a的取值范围又是什么?

1.函数y=f(x)在区间[-2,2]上的图象如图所示,则此函数的单调增区间是________.

2.函数y=

的单调减区间是________.

3.在下列函数f(x)中,满足对任意x1,x2∈(0,+∞),当x1<

f(x2)的是________.(填序号)

①f(x)=x2;

②f(x)=

③f(x)=|x|;

④f(x)=2x+1.

4.给出下列说法:

①若定义在R上的函数f(x)满足f(3)>f

(2),则函数f(x)在R上为单调增函数;

②若定义在R上的函数f(x)满足f(3)>f

(2),则函数f(x)在R上不可能为单调减函数;

③函数f(x)=-

在(-∞,0)∪(0,+∞)上为单调增函数;

④函数f(x)=

在定义域R上为单调增函数.

其中说法正确的是________.(填序号)

5.若函数f(x)在R上是单调减函数,且f(|x|)>

f

(1),则x的取值范围是________.

1.若f(x)的定义域为D,A⊆D,B⊆D,f(x)在A和B上都为单调减函数,未必有f(x)在A∪B上为单调减函数.

2.对单调增函数的判断,对任意x1<

x2,都有f(x1)<

f(x2),也可以用一个不等式来替代:

(x1-x2)[f(x1)-f(x2)]>

0或

>

0.对单调减函数的判断,对任意x1<

x2,都有f(x1)>

f(x2),相应地也可用一个不等式来替代:

(x1-x2)·

[f(x1)-f(x2)]<

<

0.

3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.

4.若f(x),g(x)都是单调增函数,h(x)是单调减函数,则:

①在定义域的交集(非空)上,f(x)+g(x)为单调增函数,f(x)-h(x)为单调增函数,②-f(x)为单调减函数,③

为单调减函数(f(x)≠0).

5.对于函数值恒正(或恒负)的函数f(x),证明单调性时,也可以作商

与1比较.

答案精析

问题导学

知识点一

思考 两函数的图象如下:

函数f(x)=x的图象由左到右是上升的;

函数f(x)=x2的图象在y轴左侧是下降的,在y轴右侧是上升的.

知识点二

思考 f(x)=x2的单调减区间可以写成(-∞,0),而f(x)=

的单调减区间(-∞,0)不能写成(-∞,0],因为0不属于f(x)=

的定义域.

题型探究

例1 解 y=f(x)的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y=f(x)在区间[-5,-2],[1,3]上是单调减函数,在区间[-2,1],[3,5]上是单调增函数.

跟踪训练1 解 先画出f(x)=

的图象,如图.

所以y=|x2-2x-3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];

单调增区间是[-1,1],[3,+∞).

例2 证明 f(x)=

的定义域为[0,+∞).

设x1,x2是定义域[0,+∞)上的任意两个实数,且x1<

x2,

则f(x1)-f(x2)=

.

∵0≤x1<

∴x1-x2<

0,

∴f(x1)-f(x2)<

0,即f(x1)<

f(x2),

∴f(x)=

在定义域[0,+∞)上是单调增函数.

跟踪训练2 证明 设x1,x2是实数集R上的任意实数,且1≤x1<

则f(x1)-f(x2)=x1+

-(x2+

=(x1-x2)+(

=(x1-x2)+

=(x1-x2)(1-

=(x1-x2)(

).

∵1≤x1<

x2,∴x1-x2<

0,1<

x1x2,

0,故(x1-x2)(

)<

即f(x1)-f(x2)<

f(x2).

∴f(x)=x+

在区间[1,+∞)上是单调增函数.

例3 证明 方法一 设x1,x2是实数集上的任意两个实数,且x1>

x2.令x+y=x1,y=x2,则x=x1-x2>

f(x1)-f(x2)=f(x+y)-f(y)=f(x)+f(y)-1-f(y)=f(x)-1.

∵x>

0,∴f(x)>

1,f(x)-1>

∴f(x1)-f(x2)>

0,即f(x1)>

∴函数f(x)在R上是单调增函数.

方法二 设x1>

x2,则x1-x2>

从而f(x1-x2)>

1,

即f(x1-x2)-1>

f(x1)=f[x2+(x1-x2)]

=f(x2)+f(x1-x2)-1>

故f(x)在R上是单调增函数.

跟踪训练3 证明 ∵对于任意实数m,n,恒有f(m+n)=f(m)·

f(n),令m=1,n=0,可得f

(1)=f

(1)·

f(0),

∵当x>0时,0<f(x)<1,∴f

(1)≠0,∴f(0)=1.

令m=x<0,n=-x>0,

则f(m+n)=f(0)=f(-x)·

f(x)=1,

∴f(x)f(-x)=1,

又∵-x>0时,0<f(-x)<1,

>1.

∴对任意实数x,f(x)恒大于0.

设任意x1<

x2,则x2-x1>

∴0<

f(x2-x1)<

∴f(x2)-f(x1)

=f[(x2-x1)+x1]-f(x1)

=f(x2-x1)f(x1)-f(x1)

=f(x1)[f(x2-x1)-1]<

∴f(x)在R上是单调减函数.

例4 [

解析 要使f(x)在R上是单调减函数,需满足:

解得

≤a<

跟踪训练4 (-∞,1]∪[2,+∞)

解析 由于二次函数开口向上,故其单调增区间为[a,+∞),单调减区间为(-∞,a],而f(x)在区间[1,2]上单调,所以[1,2]⊆[a,+∞)或[1,2]⊆(-∞,a],即a≤1或a≥2.

例5 解 f(1-a)<

f(2a-1)等价于

解得0<

a<

即所求a的取值范围是0<

跟踪训练5 解 ∵y=f(x)的定义域为R,且为单调增函数,

f(1-a)<

f(2a-1),

∴1-a<

2a-1,即a>

∴所求a的取值范围是(

,+∞).

当堂训练

1.[-2,1] 2.(-∞,0),(0,+∞)

3.②

4.②④

解析 由单调增函数的定义,可知①错误;

由单调减函数的定义,可知②正确;

因为函数f(x)=-

在(-∞,0)和(0,+∞)上为单调增函数,所以③错误;

作出函数f(x)=

的图象,如图所示,由图象可知④正确.

5.(-1,1)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1