短流程炼钢技术发展概论DOCX 30页文档格式.docx

上传人:b****5 文档编号:16059973 上传时间:2022-11-18 格式:DOCX 页数:18 大小:627.65KB
下载 相关 举报
短流程炼钢技术发展概论DOCX 30页文档格式.docx_第1页
第1页 / 共18页
短流程炼钢技术发展概论DOCX 30页文档格式.docx_第2页
第2页 / 共18页
短流程炼钢技术发展概论DOCX 30页文档格式.docx_第3页
第3页 / 共18页
短流程炼钢技术发展概论DOCX 30页文档格式.docx_第4页
第4页 / 共18页
短流程炼钢技术发展概论DOCX 30页文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

短流程炼钢技术发展概论DOCX 30页文档格式.docx

《短流程炼钢技术发展概论DOCX 30页文档格式.docx》由会员分享,可在线阅读,更多相关《短流程炼钢技术发展概论DOCX 30页文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

短流程炼钢技术发展概论DOCX 30页文档格式.docx

(3)生产品种比较单一,适宜专业化生产;

(4)生产效率高,全员劳动生产率达到2700t/人•a以上。

电炉短流程的设备配置

电炉短流程的设备配置一般应遵循以下原则:

(1)单机匹配:

即一台超高功率电炉配一套精炼设施、一台连铸机和一套主力轧机;

(2)广泛采用近终形连铸技术和连轧技术;

(3)采用连铸坯热送和直轧技术;

(4)以轧定产,即根据轧钢机的生产能力合理配备各工序设备a电炉短流程的设备配置情况和代表性工艺见表1-1。

表1-1电炉短流程的设备配置和今后的发展趋势

表1-1中计算按电炉作业率为75%,电炉生产效率为I.lt/t•h,电炉利用系数为I.6t/MV.A•h,钢水成材率为93%计算。

按电炉短流程工艺运行的工厂设计力案,工艺布置紧凑,占地面积小,基建投资低,并充分考虑了生产节能(平均节能20%),提高生产效率等。

自从90年代初美国Nucor的电炉-薄板坯连铸为代表的电炉短流程投产以来,引起了世界钢铁界的重视。

电炉短流程的发展是第二次世界大战以后钢铁技木的第三个重大变化。

该流程的典型示意图如图1-1所示。

近20年来电炉炼钢技术迅速发展,主要表现在以下两个方面:

其一,电炉生产技术本身逐步发展完善,以电炉强化冶炼为中心,提高熔池能量输人密度T缩短冶炼周期,先后开发出超髙功率供电、水冷炉壁(盖)、偏心炉底出钢、直流或髙阻抗供电以及导电横臂等先进技术。

其二,现代电炉技木大量借鉴、吸收和融合了各项转炉强化冶炼技术,如炉内氧气-燃料助熔、熔池喷炭增加热源、炉气二次燃烧和废钢在线预热等。

如著名的Danarc电炉是以高阻

抗供电技术与K-ES喷炭、二次燃烧技术结合的产物。

竖炉电炉的开发则借鉴了kV•A和EOF炉等工艺技术经验。

近代电炉炼钢技术的特点是:

(1)冶炼强度提高,冶炼时间缩短。

电炉经过了30年的发展,熔化功率从300kV•AA提高到IOOOkV•A八,冶炼强度提高了2倍以上,冶炼周期从180min缩短到53min,使电炉的生产能力相应提高了倍。

(2)热、电效率提高,能置消耗降低。

由于冶炼时间大幅度缩短,电炉的热效率明显提高(从54,3%提高到71.7%),使电炉冶炼总能耗从700kW·

h/t下降到530kW•h/t,下降了24.3%。

(3)化学能输入比例提高,电耗降低。

在标准状态下,电炉冶炼的氧气消耗从8m3/t增加到40m3/t,化学能的输入比例从5.1%提高到35.8%,而冶炼电耗从630kW•h/t下降到340kW·

h/t。

随着化学能输入比例的提高,电炉的利用系数明显提高,达到I.51t/MV·

h国外电炉近30年生产技术的发展见表I-2。

表1-2国外电炉生产技术的发展

电炉生产技术发展趋势

电炉强化冶炼技术是电炉生产技术发展的核心,也是今后电炉技术进步的关键。

分析世界上最先进的电炉技术参数和经济指标,见表1-3,可见电炉强化治炼技术发展趋势有以下特点:

(1)生产高效化。

通过采取扩大炉容,采用超高功率缩短冶炼时间等措施。

目前.世界上最大的直流电炉为日本东京钢铁公司冈山厂200tDC炉,平均出钢量为220t大型现代化电炉的冶炼时间一般少于60min,最短的冶炼周期为Danarc电炉,达到45min。

该电炉的日产炉数平均可达到32炉。

根据德围BWS厂的生产数据计算,电炉的作业率可达到86.7%。

据国际先进指标计算,当代电炉最大生产能力可达到267t/h。

电炉利用系数达到I.78t/MV•A·

h;

单台电炉最大年产量可达到176.8万t/a(即年产8841炉钢)。

表1-390年代世界最先进电炉的技术参数和经济指标

(2)供电直流化。

20世纪90年代,世界上总计建设大型直流电炉80余座,占同期新建电炉总数的70%〜直流电炉的迅速发展充分显示出其技术优点。

电炉供电方式比较见表l-4。

l

分析表1-4,可见:

1)DC电炉的供电效率与超髙功率AC电炉相当,略低于高阻抗AC电炉;

2)DC电炉的热效率高于AC电炉与高阻抗AC电炉;

3)DC电炉的电极消耗明显低于AC电炉;

4)DC电炉和AC电炉相比,减轻了环境污染。

此外,对于发展中国家,由于电网容量小,更适合采用大型直流电炉。

(3)熔炼转炉化。

从能量输入的观点出发,电炉强化冶炼的技术途径为:

表1-4电炉供电方式的比较

1)超髙功率供电,受到耐火材料的限制,输入熔池的电能密度一般不超过IOOOkV·

A/t。

当大于700KV·

A/t时,随着电能密度的提高,电弧热效率降低,电炉利用系数下降。

2)提髙供氧强度,增加化学能的输入比例。

通常采用以下两种方式:

吹氧脱碳,在标准状态下,控制熔池供氧强度小于0.53m/t•min;

燃料助熔,对于容量大小不同的电炉,输入比功率基本相同为0.14MW/t。

3)回收烟气能量:

根据电炉熔池脱碳童的大小,电炉烟气带走的热量每吨钢波动在105〜165kW·

h。

其中烟气的物理热每吨钢约为45〜65kW·

h,烟气的化学潜热每吨铜(CO和H2气)约为60〜IOOkW.h。

可以采用两种途径固收烟气能量:

a废铜预热。

热效率波动在53%(consteel法)〜68%(竖炉法),但同时增加了炉壁水冷件的散热损失5%〜10%。

设备复杂,投资大.

B炉气二次燃烧。

热效率决定于炉气的二次燃烧率(PCR)和二次燃烧的传热效率(HTR)的乘积,可达到60%左右。

(4)操作智能化。

长期以来,电炉依靠调节每根电极的单位阻抗进行控制。

由于电炉熔池内情况复杂,反应剧烈,很难准确预报熔池阻抗&

只能长期沿用电极定位控制的假设对电极进行自适应控制。

因而造成电弧不稳定,三相不平衡,降低了电,热效率。

最近,美国神经网络控制应用工程公司,利用人工神经网络技术,开发出“智能电炉”控制系统。

诙系统具备以下3神基本功能:

1)预报功能:

对基于电炉操作条件分析,提前100〜300ms预报控制误差值,送出控制信号,实行超前补偿,保证电弧稳定。

2)识别功能;

了解三相供电的复杂关系和各种信咢对电极运动的影响,正确识别和选择满足所需条件的输出信号。

3)优化功能:

监视电极的不稳定性,调节电极进行优化补偿。

目前,世界上已经有30多座电炉采用智能控制技术,见表1-5。

采用该项控制技术,冶金效果明显优于普通计算机模型控制&

美国北极星钢厂采用该项控制技术后,每年可获得纯经济效益万美元。

表I-5智能电炉的实际效果

(5)钢水纯净化。

提高钢水的纯净度,进一步改善产品的各项特性,是20世纪90年代国际钢铁生产技术的发展重点。

对于电炉流程也不例外,当代大型超高功率电炉配备各种炉外精炼设施可以生产出纯净度很高的各种钢材

世界电炉炼钢技术发展很快,从电炉吹氧助熔到油氧喷枪,从低功率(LP),超高功率(UHP),偏心底出钢(EBT),水冷炉壁(盖),碳氧枪强化冶炼和泡沬渣工艺,二次冶炼,炉底搅拌技术,到20世纪80年代的直流电炉,90年代的双炉壳电炉和竖式电炉。

各种新型电弧炉的开发应用状况见表1-6。

表1-6各种斩型电炉的开发应用状况

通过电炉技术发展,电炉几个主要参数发生了变化:

(1)出钢至出钢时间和电极消耗量从20世纪(30年代的ieOmiri和每吨钢6.Skg,降至90年代的55min和每吨钢1,5〜2.5kg;

(2)电耗从60年代的每吨钢630kW•h,降至90年代的每吨钢300〜35OkW•h;

(3)每年出钢炉数从约2500炉增加到8000炉,双炉壳电炉接近10000炉,

部分新型电炉及技术如下:

(1)竖式电炉。

英国希尔列斯钢厂是世界第一台工业化生产的90t竖式电炉(Fuchs)。

经过多年来的不断完善和改进,在全废钢操作时,电耗可低达264kW•h/t。

第一台竖式电炉的成功,使该项技术逐步被世界各国电炉炼钢界所接受,至今竖式电炉已公认是利用电炉废气热量预热废钢的最实用系统。

德国福克斯公钶的竖式电炉的设计充分考虑了尽可能适应各厂不同的条件:

1)在原料方面,有用全废钢的竖式电炉,有用55%的海绵铁的,也有用35%热铁水的。

2)在竖炉结构上,有带托料机构的,也有让废钢自然落下的。

3)有竖炉旋开式,也有竖炉壳开出式。

4)竖炉供电方面有直流的,也有交流的当采用直流供电时,其底电极结构上,有采用水冷底电极的,也有底电极采用导电耐火材料的。

由于在回收电炉废气热量的技术中,竖式电炉效率最高,近年来世界各国均在大力开发该顼技术。

其中有:

曰本石川邱播重工公司为东京制钢提供的炉容为240t的竖式双电极直流电炉,如图1-2所示。

奥钢联推荐的竖式(Comelt)4电极直流电炉如图I-3所示。

这些新的尝试、设想和概念,说明竖式电炉的技术将成为现代电炉的重要构成部分。

(2)双竖炉电炉。

法国SAM蒙特罗公司于199年投产一座90t双竖炉电炉,配备一台96MV·

A交流变压器;

其最大二次电压900V,设有5个位置的电抗器,装有12个3MW加热能力的烧嘴,直径6.3m的炉子为椭圆形,设计采用6支氧燃烧嘴。

在竖炉出口处利用废气系统的能力,在标准状态下为9-10m3/h,便于炉于区域内的氧气收集。

该双竖炉所用耐火材料为,渣线及水冷板下方的侧壁为镁碳砖,炉底为干式捣打料,在氮气搅拌器上放置一种特殊的多孔材料。

为保证软气泡操作,在标准状态下,采用4mVh氮气进行搅拌,炉龄已达3000炉以上。

(3)双炉壳电炉。

采用双炉壳布置方法的电炉,可以充分利用变压器的能力,提高电炉生产率,同时将电炉的不通电时间降低到最短时间,保证了电炉出钢节奏稳定,易与连铸相匹配,双炉壳布置的电炉有以下类型;

法国SAM钢厂:

90t,双炉壳,交流,带有竖式预热器。

卢森堡ARBED铜厂:

95t,双炉壳,交流,带有竖式预热器。

美国STEELDYNAMICS钢厂150t,双炉壳,交流,供板坯连铸机。

美国NORTHSTAR-BHP钢厂:

165t,双炉壳,交流,带有竖式预热器,供薄板臟铸机。

加拿大DOFESCO钢厂:

150t,双炉壳,交流,用热装铁水技术,供板坯连铸机。

双炉壳电炉的操作特点:

采用一个电源两个炉壳,交替反复地进行预热的熔化方法。

即一个电炉进行熔化,另一个电炉在装入的炉料中开一个垂直孔,把加热器装在炉顶,把燃烧气体导入该垂直孔,对炉料进行预热。

由图1-4看出,双炉壳电炉有A、B两个炉子A炉在通电熔化期间,B炉处于预热状态,电极供电装置5和预热用炉盖2,是两炉共用,采用互相交换的方式,交替反复地进行预热熔化。

采用双炉壳可以使用髙温气体预热以提高预热效率,还可达到如下效果:

1)预热时间35〜50min。

2)平均温度约700℃。

3)预热效率50%。

4)单位电耗降低30%。

5)电极单耗降低15%。

6)耐火材料单位电耗降低15%。

7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1