江苏省苏州市中考数学一轮复习 第12讲《一次函数的综合应用》练习Word下载.docx
《江苏省苏州市中考数学一轮复习 第12讲《一次函数的综合应用》练习Word下载.docx》由会员分享,可在线阅读,更多相关《江苏省苏州市中考数学一轮复习 第12讲《一次函数的综合应用》练习Word下载.docx(22页珍藏版)》请在冰豆网上搜索。
解得:
∴BC的解析式为y1=2x+240,
当y=y1时,4x=2x+240,
x=120.
则她们第一次相遇的时间是起跑后的第120秒.
故答案为120.
【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.
【变式】
直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是( )
A.m>-1B.m<1C.-1<m<1D.-1≤m≤1
【答案】C
【解析】联立
解得
∵交点在第四象限,
∴
解不等式①得,m>-1,
解不等式②得,m<1,
所以,m的取值范围是-1<m<1.
故选C.
知识点二、一次函数与一元一次不等式
(2015辽宁辽阳)如图,直线
与
(
且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式
的解集为()
A.x≥﹣1B.x≥3C.x≤﹣1D.x≤3
【答案】D.
【分析】根据图形即可得到不等式的解集.
【解析】从图象得到,当x≤3时,
的图象对应的点在函数
的图象上面,∴不等式
的解集为x≤3.故选D.
【点评】本题考查了一次函数与一元一次不等式:
从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;
从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.要注意数形结合,直接从图中得到结论.
【方法技巧规律】一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
广西百色·
3分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )
A.x≤3B.x≥3C.x≥﹣3D.x≤0
【考点】一次函数与一元一次不等式.
【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.
∵y=kx+3经过点A(2,1),
∴1=2k+3,
k=﹣1,
∴一次函数解析式为:
y=﹣x+3,
﹣x+3≥0,
x≤3.
故选A.
知识点三、方案设计
湖北荆门·
12分)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?
将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?
【考点】一次函数的应用;
一元一次不等式的应用.
【分析】
(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.
(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;
(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.于是得到结论.
(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);
(2)根据题意得140x+12540≥16460,
∴x≥28,
∵x≤30,
∴28≤x≤30,
∴有3种不同的调运方案,
第一种调运方案:
从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;
第二种调运方案:
从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;
第三种调运方案:
从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,
(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,
所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.
此时的方案为:
从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.
(2015•四川凉山州第22题8分)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.
(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?
(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?
哪种租车方案费用最低,最低费用是多少?
【解析】一元一次不等式组的应用;
二元一次方程组的应用.
(1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可.
(2)首先根据题意,设每天租m辆大车,则需要租10﹣m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;
最后分别求出每种租车方案的费用是多少,判断出哪种租车方案费用最低,最低费用是多少即可.
(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,
则
.
所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
答:
每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
(2)设每天租m辆大车,则需要租10﹣m辆小车,
∴施工方有3种租车方案:
①租5辆大车和5辆小车;
②租6辆大车和4辆小车;
③租7辆大车和3辆小车;
①租5辆大车和5辆小车时,
租车费用为:
1000×
5+700×
5
=5000+3500[
=8500(元)
②租6辆大车和4辆小车时,
6+700×
4
=6000+2800
=8800(元)
③租7辆大车和3辆小车时,
7+700×
3
=7000+2100
=9100(元)
∵8500<8800<9100,
∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.
【点评】
(1)此题主要考查了一元一次不等式组的应用,要熟练掌握,解答此题的关键是要明确:
一元一次不等式组的应用主要是列一元一次不等式组解应用题。
知识点四、分段函数
浙江省绍兴市·
8分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:
00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:
30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间?
排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;
由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.
(1)暂停排水需要的时间为:
2﹣1.5=0.5(小时).
∵排水数据为:
3.5﹣0.5=3(小时),一共排水900m3,
∴排水孔排水速度是:
900÷
3=300m3/h;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).
∵t=1.5时,排水300×
1.5=450,此时Q=900﹣450=450,
∴(2,450)在直线Q=kt+b上;
把(2,450),(3.5,0)代入Q=kt+b,
得
,解得
∴Q关于t的函数表达式为Q=﹣300t+1050.
(2015•青海西宁第27题10分)兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:
西宁到门源的火车票价格如下表
运行区间
票价
上车站
下车站
一等座
二等座
西宁
门源
36元
30元
(1)参加社会实践的学生、老师各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式.
【解析】一次函数的应用;
二元一次方程组的应用.
(1)设参加社会实践的学生有m人,老师有n人,根据都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元,列出方程组即可;
(2)当50<x<65时,费用最低的购票方案为:
学生都买学生票共50张,(x﹣50)名老师买二等座火车票,(65﹣x)名老师买一等座火车票,然后列出函数关系式即可.
【解答】解;
(1)设参加社会实践的学生有m人,老师有n人.
若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得:
参加社会实践的学生、老师分别为50人、15人;
(2)由
(1)知所有参与人员总共有65人,其中学