机器人行走电路设计Word文件下载.docx

上传人:b****2 文档编号:14830926 上传时间:2022-10-25 格式:DOCX 页数:9 大小:114.95KB
下载 相关 举报
机器人行走电路设计Word文件下载.docx_第1页
第1页 / 共9页
机器人行走电路设计Word文件下载.docx_第2页
第2页 / 共9页
机器人行走电路设计Word文件下载.docx_第3页
第3页 / 共9页
机器人行走电路设计Word文件下载.docx_第4页
第4页 / 共9页
机器人行走电路设计Word文件下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

机器人行走电路设计Word文件下载.docx

《机器人行走电路设计Word文件下载.docx》由会员分享,可在线阅读,更多相关《机器人行走电路设计Word文件下载.docx(9页珍藏版)》请在冰豆网上搜索。

机器人行走电路设计Word文件下载.docx

1.3.2计数电路及数码显示电路 

6

1.3.3电机正反转驱动电路 

7

1.3.4整机工作原理 

1.4仿真结果与分析 

8

1.4.1仿真效果 

1.4.2仿真过程 

1.4.3结果分析 

9

1.4.4 

特点及改进 

1.5所用主要芯片说明 

10

1.5.1 

555定时器 

1.5.2 

74LS160加计数器 

1.5.3L298电机驱动芯片 

11

附录 

12

小结与体会 

13

参考文献 

14

 

1机器人行走电路设计

1.1任务与要求

1.1.1设计任务

设计一个能前进、后退的机器人行走控制电路。

1.1.2设计要求

(1)接通电源,机器人前进,行走一段时间后,机器人自动后退,退行一段时间后自动前行,周而复始。

(2)机器人行走动力只能使用干电池,不能使用动力电源。

(3)机器人前进、后退时间可调。

(4)对电路进行仿真通过。

1.2设计方案

1.2.1设计总体思路

通过对设计要求的仔细分析考虑后,得出以下设计思路:

电路分为三部分电路,分别为周期脉冲信号发生电路、计数及数码显示电路、直流电机正反转驱动电路。

信号发生器是用555定时器组成的多谐振荡器,其中的一个电阻用滑线变阻器,方便调节电阻大小,进而调节振荡频率。

计数电路是用十进制加法计数器74LS160和相应的门电路组成,用强制清零法设计电路,可以调节计数周期,后接数码管显示计数状态。

直流电机正反转电路是由D触发器74LS74和芯片L298组成,L298接受触发器的信号,其两个输入端分别接两个相反的信号,触发器信号翻转的同时,电机也随着反向转动。

1.2.2设计原理框图

555定时器组成多谐振荡器

数码管

74LS160组成进制可调的计数器

D触发器组成信号翻转电路

L298组成直流电机驱动电路

直流电机

图1.1原理框图

1.2.3系统流程图

图1.2系统流程图

1.2.4整体原理电路图

图1.3设计原理图

1.3各部分电路原理分析

1.3.1方波信号发生电路

(1)原理说明

用555定时器构成的多谐振荡器如下图3所示。

接通电源后,电容C1被充电,当Vc1上升到2/3Vcc时,触发器复位,同时放电,BJT导通,此时输出电平为低电平,电容C1通过R2和T放电,使Vc1下降。

当Vc1下降到1/3Vcc时,触发器又被置位,输出电平翻转为高电平。

C1放电结束时,T截止,Vcc将通过R1和R2向电容器C1充电,Vc1由1/3Vcc上升到2/3Vcc时,触发器又发生翻转,如此周而复始,在输出端就得到了一个周期方波,其频率为:

f=1.43/(R1+2R2)C1。

(2)参数设计

根据方波的频率公式,可以设计不同参数,使得脉冲时间间隔不同,进而与计数器共同控制机器人前进和后退的时间。

为方便计算和基于常见的电容,取电容C1为47uF。

R2固定为10K。

为了方便调节振荡频率,R1用滑动变阻器代替,其最大阻值为100K。

电容C2取0.01uF,目的是为了减小干扰信号使振荡器更稳定。

根据公式,可以方便地调节滑动变阻器来调节频率。

比如说,想要1HZ的振荡频率,把47uF和10K带入公式中的C和R2,解得R1约为10K,则把滑动变阻器调到10%,就可以实现频率为1HZ即周期为1S。

同样的方法可以解得,当滑动变阻器调到41%时,振荡频率为0.5HZ,即周期为2S。

图1.4多谐振荡电路

1.3.2计数电路及数码显示电路

如图4,计数电路由十进制计数器74LS160、四个单刀双掷开关SW-SPDT、四个异或门74LS86和一个四输入端的或门4072组成。

用强制清零法设计计数电路,使得计数器计到某一数值时,清零端电平变为0,电路又重新开始计数。

为了使计数周期可调,用了四个单刀双掷开关,可用来设置计数周期,从左到右为高位到低位。

每个开关的一端接异或门74LS86的一端,四个异或门的另外一端分别接74LS160的四个输出端,高低位分别对应。

异或门处理信号出来后接四输入端或门,然后接回到计数器的清零端。

由此,就构成了反馈清零电路。

为了清晰地讲明工作原理,假设想要计数周期为7秒,在555振荡电路为1HZ的情况下,设计计数器为7进制,把开关拨为0111。

计数器从0000开始计数,通过异或门及与或门,未计数到0111时,异或所得结果总有一个为1,使通过或门之后信号总为1,即清零端为1,不执行清零功能。

当计数到0111时,异或后都为1,通过或门后为0,即清零端为0,计数器异步清零,又重新开始计数。

这样就得到了一个计数周期为7秒的计数器。

把74LS160的四个输出端接数码管显示,就可以实时观测计数状态了。

图1.5计数电路

1.3.3电机正反转驱动电路

如图5,正反转驱动电路由D触发器74LS74和L298组成。

D触发器的脉冲信号来自计数器清零时的信号,由于清零时是有1变0,产生下降沿,而74LS74是上升沿触发,所以加了一个反相器74LS04,使信号为上升沿。

由D触发器的状态方程为Qn+1=D可知,把触发器的D端接触发器的反相输出端时,当触发时,就会实现信号翻转。

把触发器的两个输出端分别接L298的两个输入端IN1和IN2,L298的4、6、9、11脚接高电平,1、8、15管脚接低电平。

最后把直流电机的两端接在对应的输出端OUT1和OUT2上。

当触发器信号翻转时,IN1和IN2反相跳变,随之OUT1和OUT2也跳变,就会驱动直流电机往相反的方向转动。

图1.6 

电机正反转电路

1.3.4整机工作原理

多谐振荡器和计数器都是可调的,根据要求的时间设计好相应的参数。

如7秒,则设计振荡器滑动变阻器为10K,使周期为1秒;

四个开关状态为0111,使计数器为7进制。

整机工作时,直流电机先往一个方向转动。

振荡器产生周期方波信号,每一个振荡周期计数器计一次数,当计数到设定的数值时,计数器清零,重新开始下一个周期。

在清零的同时,给触发器一个脉冲信号,触发器被触发,信号翻转,通过L298驱动,直流电机往与原来相反方向转动。

从而实现了机器人的前进和后退周而复始的功能,且周期可调。

1.4仿真结果与分析

1.4.1仿真效果

图1.7仿真图

1.4.2仿真过程

(1)把滑动变阻器的阻值调为10K欧,开关状态为0111,得到一个计数周期为7秒的计数器。

把总开关断开,按下仿真开始按钮。

此时计数器不工作,直流电机不转;

停止仿真,把总开关闭合,再次按下开始按钮。

此时计数器从0开始计时,每隔约1秒,计数器进一,电机正转。

当计数到7秒时,计数器清零,又从零开始计时。

同时出发器输出端发生跳变,电机反转。

(2)把滑动变阻器阻值调为41K,即把振荡周期设为了2秒,把开关状态调为1001,即九进制,由此得到一个计数周期为18秒的计数器。

(1)的仿真结果基本一样,只是,数码管每隔约2秒进一,计数到9秒时才清零。

同时直流电机往与原来相反的方向转动。

(3)把变阻器调为不同的值,开关也调到不同的状态,可得到得到不同的计数周期,直流电机也按照所调的周期实现正反转。

1.4.3结果分析

由以上仿真结果可得:

(1)总开关可控制电路是否工作。

(2)直流电机会根据计数周期,实现正转和反转,周而复始。

(3)计数周期可以通过改变变阻器阻值和开关状态来改变,即时间可调。

(4)整个电路只用到了逻辑电平电压约5V,没有用动力电源。

综上,所设计电路符合设计要求。

1.4.4特点及改进

该电路的特点是结构思路简单,能够实现任务的要求。

由仿真过程可以知道,该设计最大的不足之处是计数周期可调节的范围太小,可以通过多加一个计数芯片,使进制的调节范围更大。

计数周期只能到达9,虽然74LS160是十进制计数器,但如果到十再清零,是计数器自己清零,不是反馈清零,所以不会给触发器触发信号,不能实现正反转功能。

解决这个问题需要用置数法,或改换其他计数芯片。

1.5所用主要芯片说明

1.5.1555定时器

表1.1555定时器功能表

输入

输出

阈值输入

触发输入

复位

放电管T

X

导通

<

2Vcc/3

Vcc/3

1

截止

>

不变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1