成都理工误差实验报告数据处理_精品文档Word文档格式.docx

上传人:b****2 文档编号:14436941 上传时间:2022-10-22 格式:DOCX 页数:8 大小:44.04KB
下载 相关 举报
成都理工误差实验报告数据处理_精品文档Word文档格式.docx_第1页
第1页 / 共8页
成都理工误差实验报告数据处理_精品文档Word文档格式.docx_第2页
第2页 / 共8页
成都理工误差实验报告数据处理_精品文档Word文档格式.docx_第3页
第3页 / 共8页
成都理工误差实验报告数据处理_精品文档Word文档格式.docx_第4页
第4页 / 共8页
成都理工误差实验报告数据处理_精品文档Word文档格式.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

成都理工误差实验报告数据处理_精品文档Word文档格式.docx

《成都理工误差实验报告数据处理_精品文档Word文档格式.docx》由会员分享,可在线阅读,更多相关《成都理工误差实验报告数据处理_精品文档Word文档格式.docx(8页珍藏版)》请在冰豆网上搜索。

成都理工误差实验报告数据处理_精品文档Word文档格式.docx

按有excel软件的电脑

实验步骤:

1.依据5.1.1所测量数据,统计平均值和标准差;

统计量

数据个数

平均值

标准差

备注

Hgcl2的浓度

120

0.80

0.045

剔除前的数据

117

0.038

剔除后的数据

2.按平均值加减一倍,两倍,三倍标准差编制质量监控图;

3.将5.1.2监测数据标绘在所编监控图上:

4.分析6.1-6.11时间段中生产过程是否正常。

按三倍标准差理论,上午有五个数据不正常,它们分别是0.64,0.65,0.94,0.98,0.99

下午有两个数据部正常,它们分别是0.98,0.99

表5.1.1对HgCl2(g/L)浓度120次重复测量结果

实验数据

表5.1.2某化工产XXXX年6月1日至11日生产过程中HgCl2(g/L)浓度监测值

日期

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

HgCl2

(g/L)

上午

0.85

0.83

0.72

0.65

0.64

0.88

0.92

0.94

0.98

0.99

0.86

下午

0.78

0.89

0.90

数据处理

实验前数据:

实验后数据

平均值加减一倍两倍三倍

x+3δ

x+2δ

x+1δ

x

x-δ

x-2δ

x-3δ

0.914

0.876

0.838

0.8

0.762

0.724

0.686

其概率统计表格如下

范围

概率

97.50%

94.17%

71.17%

71.17

思考题解答:

1.监控图实质是什么理论构建的?

这图件的主要作用是什么?

答:

质量监控图实质是利用极限误差理论建立的。

它能够直观观察生产过程中影响产品质量的关键参数波动情况,从而可以及时获得调整参数值时间,保证产品质量。

此外,它也常用于监控仪器长期工作的稳定性。

2.服从正态分布的随机变量具有什么特点?

根据一批测量数据如何判断其是否服正态分布?

(1)特点:

对称性,单峰性,有界性,抵偿性。

(2)先算其各自的残余误差,然后画出残余误差的大致散点图,看其是否有服从正态分布或有正态分布的趋势,若有,就可判断这批数据服正态分布。

3.一批测量数据落入其平均值加减一倍,两倍,三倍均方差区间的几率与理论值相同吗?

不同。

因为理论值是由测量次数足够多和测量误差为正态分布时算出来的,此实验显然达不到这样的要求,只能逐步缩小这种差距。

4.为什么监控数据超过平均值加减三倍方差时必须调整生产流程工艺或测量仪器?

因为监控数据超过三倍均方差的概率理论上只有0.3%,时相当小的,此时有必要怀疑是由于生产流程工艺或测量仪器带来的系统误差所造成的,所以此时就必须调整生产流程工艺或测量仪器

结论与心得体会:

结论:

在极限误差理论下,可以建立符合要求的置信概率下的监控图,以此来监控生产过程中质量的波动情况,以保证产品质量

心得:

我认识到了极限误差的实用性,其次,在实验中数据处理时要熟练掌握误差理论中的公式和其意义。

实验二标准物质研制中离群值的剔除

当测量数据中包含粗大误差时,该测量数据是不可以作为正常数据参加统计与处理的。

因此,对一批测量数据处理的第一步,一定是对其是否含有粗大误差做出判断。

一般情况下,我们通常将含有粗大误差的数据称为“离群数据”。

本实验采用我国在研制玄武岩标准物质时,由国内外16个实验室提供的Th元素分析数据,采用两种以上粗大误差判别方法进行判断,剔除含有粗大误差的离群数据,以提供最终可以用于Th元素定值的正常数据。

通过本实验,加深同学们对粗大误差判别方法的理解与应用。

1.σ法判断粗大误差的原理

根据正态分布的理论,我们可以知道,正常测量数据大于平均数加减3σ的概率是很小的,当测量次数足够大时,这个概率仅为0.3%。

换言之,落入平均数加减3σ之外区域的数据含有粗大误差的概率为99.7%。

所以,当测量数据落入平均数加减3σ之外区域时,我们可以认定其含有粗大误差。

2.格罗布斯准则判断粗大误差的原理

逻辑上我们知道,对一列测量数据,最有可能含有粗大误差的数据是该列数据中的极值(极大值或者极小值),而判定这些极值数据是否含有粗大误差的依据依然是基于它们是不是落在某个置信概率确定的g0倍均方差的区间内。

在格罗布斯准则中,这个g0值由格罗布斯临界值表(2.4.2)给出。

测量次数不同,g0值不同;

置信概率不同,g0值也不同。

仪器设备:

安装有EXCELL软件的计算机1台。

1.对欲处理的数据进行了解和分析。

本实验中欲处理的数据是一组玄武岩标准物质定值数据。

玄武岩标准物质是一种地质标准物质。

所谓标准物质,应该在两个方面具有典型性与标准性:

即在岩性的物质组分上具有典型性与代表性;

在物质组分的定值上具有标准性与权威性。

因此,地质标准将是我们开展同类地质样品分析的参照标准。

所以,参加标准物质定值的全部数据,必须进行严格统计处理,其第一步,就是要剔除离群数据。

表5.2.1是我国研制国家一级玄武岩标准物质时,参加标准物质含量定值的国内外16个实验室对同一份样品各自给出的Th元素的19个分析结果。

表5.2.1国内外19个实验室提供的玄武岩样品中的Th元素含量(单位:

10-6)

实验室编号

No1

No2

No3

No4

No5

No6

No8

No9

No11

分析值,%

8.04

7.55

12.6

8.3

8.8

4.99

7.1

8.03

13.8

7.6

No12

No13

No14

No15

No16

No17

No19

7.95

56.9

8.1

7.7

9.37

8.11

2.对表5.2.1数据进行统计计算,并将统计结果记录在表5.2.2中。

表5.2.2数据统计表

统计元素

Th元素

19

10.99368

11.27962

3.利用3σ法判断,剔除含有粗大误差的分析数据。

将被剔除数据的有关料填入表5.2.3。

表5.2.3采用3σ法剔除数据资料表

被剔除的数据

8.443

1.966

(2.545,14.341)

4.利用格罗布斯准则,根据表2.4.2格罗布斯准则临界表,采用95%置信概率,剔除含有粗大误差的离群分析数据。

将被剔除数据的有关资料填入表。

5.2.4。

表5.2.4采用格罗布斯准则剔除数据资料表

g0

1.965

2.50

8.128

1.4851

2.48

7.848

0.968

2.44

8.039

0.617

2.41

5.对比表5.2.3与表5.2.5检验结果。

(思考:

如果两个表结果不一致,应该采信哪个表的结果?

为什么?

应该采信格罗布斯准则,因为此方法可靠度最高

国内外19个实验室提供的玄武岩样品中的Th元素含量(10-6)

数据统计表

采用3σ法剔除数据资料表

2.5

思考与解答:

1.为什么测量数据在确定定值前都要进行是否含有粗大误差的检验?

因为粗大误差的数值比较大,它为对测量结果产生明显的歪曲,所以测量数据在确定定值前都要进行是否含有粗大误差检验,从而将其从结果中剔除。

2、剔除离群数据的常用检验方法有哪些?

剔除离群数据常用的方法有3σ,罗曼洛夫斯基准则,格罗布斯准则,狄克松准则。

3、在采用不同方法检验同一批数据得到不同结果时,应以哪种方法判断的结果为准?

为什么

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1