最新两角差的余弦公式讲课稿Word格式.docx
《最新两角差的余弦公式讲课稿Word格式.docx》由会员分享,可在线阅读,更多相关《最新两角差的余弦公式讲课稿Word格式.docx(12页珍藏版)》请在冰豆网上搜索。
下面我们就一起探讨两角差的余弦公式
(二)新课讲授:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。
思考1:
怎样构造角和角?
(注意:
要与它们的正弦线、余弦线联系起来.)
思考2:
我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?
(2)怎样利用向量的数量积的概念的计算公式得到探索结果?
两角差的余弦公式:
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:
分析:
把构造成两个特殊角的差.
点评:
把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:
,要学会灵活运用.
例2、已知,是第三象限角,求的值.
因为,由此得
又因为是第三象限角,所以
所以
注意角、的象限,也就是符号问题.
(四)课堂练习:
四、课堂小结
两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
(1)牢记公式
(2)在“给值求值”题型中,要能灵活处理已、未知关系.
五、课后作业
(六)作业:
《习案》作业二十九
六、板书设计
课题两角差的余弦公式
一,新课引入四、课堂小结
二,讲授新课
1)例题讲解五、课后作业
例1
例2
三、课堂练习
七、课后反思
两角和与差的正弦、余弦、正切公式
(一)
(1)理解两角和与差的正弦、余弦、正切公式意义;
(2)掌握两角和与差的正弦、余弦、正切公式及运算律;
(3)理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方
体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
掌握用两角和与差的正弦、余弦、正切公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
通过两角和与差的正弦、余弦、正切公式解决问题的思想的学习,使学生加深认识数学知识之间的联系,体会数学知识抽象性、概括性和应用性,培养起学生学习数学的兴趣,形成学数学、用数学的思维和意识,培养学好数学的信心。
两角和、差正弦和正切公式的推导过程及运用;
两角和与差正弦、余弦和正切公式的灵活运用.
三、教学过程
(一)复习式导入:
(1)先回顾一下两角差的余弦公式:
.
(二)新课讲授
问题:
由两角差的余弦公式,怎样得到两角差的正弦公式呢?
探究1、让学生动手完成两角和与差正弦公式.
.
探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)
探究3、我们能否推倒出两角差的正切公式呢?
探究4、通过什么途径可以把上面的式子化成只含有、的形式呢?
(分式分子、分母同时除以,得到.
注意:
例1、已知是第四象限角,求的值.
因为是第四象限角,得,
,
于是有:
思考:
在本题中,,那么对任意角,此等式成立吗?
若成立你能否证明?
例2、已知求的值.()
例3、利用和(差)角公式计算下列各式的值:
(1)、;
(2)、;
(3)、.
教材P131面5题
四、课堂小结:
本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,学会灵活运用.
五、课后作业:
《习案》作业三十。
课题两角和与差的正弦、余弦、正切公式
(一)
一、新课引入四、课堂小结
二、讲授新课
2)例题讲解五、课后作业
例1例3
两角和与差的正弦、余弦、正切公式
(二)
(4)掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换。
理解两角和与差的余弦、正弦和正切公式,体会三角恒等变换特点的过程;
两角和、差正弦和正切公式的运用;
(1)基本公式
(2)练习:
教材P132面第6题。
怎样求类型?
例1、化简
此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
是怎么得到的?
,我们是构造一个叫使它的正、余弦分别等于和的.
归纳:
例2、已知:
函数
(1)求的最值。
(2)求的周期、单调性。
例3.已知A、B、C为△ABC的三內角,向量,,且,
(1)求角A。
(2)若,求tanC的值。
(四)课堂练习
练习:
(1)教材P132面7题
(2)在△ABC中,,则△ABC为()
A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形
(2)()
A.0B.2C.D.
已知,,,求
掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换
《习案》作业三十一的1、2、3题。
3)例题讲解五、课后作业
二倍角的正弦、余弦和正切公式
1、知识与技能
正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
2.过程与方法
通过对二倍角的正弦、余弦和正切公式及运算律的探究,培养学生发现问题、
分析问题、
解决问题的能力,使学生的思维能力得到训练。
继续培养学生的探究能力,类比的数学思想和创新的精神。
3.情感态度与价值观
通过本节课的学习,激发学生学习数学的兴趣和善于发现、
勇于探索的精神,体会学习的快乐。
体会各学科之间是密不可分的。
培养学生思考问题认真严谨的学习态度。
教学重点:
以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:
二倍角的理解及其灵活运用.
(一)、复习式导入:
大家首先回顾一下两角和的正弦、余弦和正切公式,
(1)在△ABC中,,则△ABC为()
A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形
(2)()
我们由此能否得到的公式呢?
(学生自己动手,把上述公式中看成即可),
公式推导:
;
把上述关于的式子能否变成只含有或形式的式子呢?
例1、已知求的值.
由得.
又因为.
于是;
例2.在△ABC中,,
例3.已知求的值.
,由此得
解得或.
例4.已知
教材P135面1、2、3、4、5题
本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
《习案》作业三十二。
课题:
一、复习引入四、课堂小结
二、新课讲授
例题讲解五、课后作业
例3
例4
七、课后反思塑料管材的研究进展
摘要:
塑料管因安全、环保而广泛应用于建筑给排水、城镇给排水以及燃气管等领域。
2013—2017年,全球塑料管材的需求量将以年均8.5%的速率增加,而亚洲需求量的年均增长率为9.7%[1]。
塑料管能够稳定增长的基础是技术发展快,不断有新材料,新技术,和新应用出现。
本文综述了建筑给排水、城乡给水管、燃气用水管、工业用管等领域中常用管材的种类、应用及新型管材的研究进展,并对其特性及优缺点进行了详细的阐述。
对比分析了塑料管材与传统管材的性能,并论述了目前塑料管材在应用上存在的问题。
一、建筑给排水领域
1、各种塑料管材的特点及其研究进展
1.1、UPVC与PVC管材UPVC管材的化学稳定性好、耐化学药品腐蚀性强。
UPVC管内壁光滑、安全卫生、水流阻力小;
但UPVC管在低温条件下较脆,在温度较高时易变软,因此不适合做热水管,也不适用于寒冷地区。
与其他管材相比,UPVC管材具有较高的模量、强度和硬度,即使在不增强的情况下也能满足普通有压液体的输送要求;
UPVC管的耐化学药品腐蚀性强、耐老化、使用寿命长、安装维修方便、外形美观、成本较低。
UPVC管材的弯曲应力和弯曲模量较高,承受外部荷载的性能较好,因此在相同的使用条件下用料最少。
刘继纯等[2]制备了具有阻燃、抗静电和耐冲击的UPVC,分析了炭黑用量和表面处理对UPVC性能的影响。
结果表明:
炭黑用量过少(小于6phr)时,UPVC的导电能力减弱;
炭黑用量过多(大于10phr)时,UPVC的抗冲击性能变差,阻燃性能下降。
炭黑未经过表面处理且用量为10phr左右时,UPVC的综合性能最优。
王振中等[3-4]探讨了UPVC在准静态裂纹扩展、高速裂纹扩展以及疲劳裂纹扩展的断裂机理。
结果发现:
UPVC在准静态荷载作用下的断裂形式为韧性断裂,在冲击荷载作用下的断裂形式为脆性断裂,在疲劳阶段的断裂形式为偏韧性断裂。
PVC径向加筋管的管外壁带有径向加强筋,可提高管的环向刚度和耐压强度;
但管材在熔融挤出时的流动性及热稳定性较差,不适于制备大口径管。
PVC是非晶形聚合物,透明性较好,透光率约80%。
严立万[5]将PVC及助剂按比例制成PVC给水管,管内水流情况可视,方便检修。
1.2、PPR管材PPR的化学稳定性好,耐化学药品腐蚀性