光纤连接器.docx

上传人:b****5 文档编号:12089986 上传时间:2023-04-17 格式:DOCX 页数:16 大小:106.06KB
下载 相关 举报
光纤连接器.docx_第1页
第1页 / 共16页
光纤连接器.docx_第2页
第2页 / 共16页
光纤连接器.docx_第3页
第3页 / 共16页
光纤连接器.docx_第4页
第4页 / 共16页
光纤连接器.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

光纤连接器.docx

《光纤连接器.docx》由会员分享,可在线阅读,更多相关《光纤连接器.docx(16页珍藏版)》请在冰豆网上搜索。

光纤连接器.docx

光纤连接器

光纤连接器性能简介(摘自光学设计论坛)

光纤连接器是光纤通信系统中各种装置连接所必不可少的器件,也是目前使用量最大的光纤器件。

由于本地通信网络的逐步光纤化,城域网和用户接入网需求的上升,近年来全球光纤连接器市场的总需求量不断扩大,预计未来十年的年增长率将在20%左右。

  虽然目前全世界共有超过70多种光连接器,并且新品种还在不断出现,但市场上(尤其是中国市场),其主流品种仍然是早年就一直沿袭下来的直径为φ2.5mm的精密陶瓷插芯和陶瓷管构成的连接器(如FC、SC、ST等)。

此外,φ1.25mm陶瓷芯的小型连接器(如LC、MU等),以及带状光纤连接器为主的多芯连接器(如MTP等)的需求量也逐步增加。

  通常,衡量光纤连接器产品质量的主要光学特性指标为插入损耗(Insertloss)和回波损耗(Returnloss)。

此外,影响产品质量可靠性的插芯端面几何参数等物理特性指标也越来越被系统厂商或高端客户所重视。

下面从光纤连接器的工作原理出发,对连接器的插入和回波损耗作简单的介绍:

  光纤连接器不能单独使用,它必须与其它同类型的连接器互配,才能形成光通路的连接,目前,较为流行的光纤连接器装配和对接方式为:

利用环氧树脂热固化剂,将光纤粘固在高精度的陶瓷插针孔内,然后使两插针在外力的作用下,通过适配器套筒的定位,实现光纤之间的对接(如图一)。

下载(27.41KB)

光纤连接器性能简介(摘自光学设计论坛)

2006-10-1023:

49

由图一可看出,保证对接的两根光纤纤芯接触时成一直线是确保连接器优良的连接质量的关键,它主要取决于光纤本身的物理性能和连接器插针的制造精度,以及连接器的装配加工精度。

同时,光纤的光学性能指标和插针端面的抛光质量对于连接器的光学性能和使用可靠性也有着直接的影响。

  插入损耗是指接续的连接器给系统造成的光功率衰减(即光连接器输出功率相对于输入功率的相对减少量)。

插入损耗主要由相接续的两根光纤之间的横向偏离造成。

如图一所示,如两根光纤排成一直线,横向偏离为零,则其造成的插入损耗最小。

但在连接器的实际对接过程中,这是不大可能实现的,因为纤芯与光纤包层的不同心、光纤包层与插针内孔的不同心以及插针内孔与外径的同心度误差等,都会引起光纤间的横向偏离。

  同时,光纤接头中的纵向间隙和端面质量也是引起插入损耗的因素之一,近年来普遍采用的UPC插头接触方式,则较好地解决了纵向间隙问题。

按此方式,插针和光纤端面经球面抛光处理,使得相对接的两插针在外力的作用下啮合在一起,使啮合光纤的顶点变形并展平,形成光纤充分对接,减小光纤接头中的纵向间隙。

  回波损耗是用来衡量连接器端面的后向反射光大小的参数。

回波的本质即是光线反射,根据菲涅尔反射原理,光线在传输过程中遇到两种折射率不同的界面时会发生菲涅尔反射,造成光通路中的信号叠加或干涉。

在高传输速率的单模光纤系统中,尤其是有线电视系统(CATV),反射现象会产生传输信号的时间滞后,使信号到达用户端的时间延迟,造成图像的重影和清晰度下降。

  连接器接头的UPC接触方式,由于减小了连接端面间的间隙,除降低了插入损耗外,也减少了连接端面的反射,提高了回波损耗;而对于CATV系统等用户来说,APC型接触方式则为更好的选择:

由于APC型接头其陶瓷插芯端面的球面法线与光纤的轴线有一个角度(一般为8°),使得从端面反射的光泄出而不返回纤芯,从而大大提高了连接器的回波损耗。

  综上所述,对于优秀的连接器跳线生产厂家而言,为确保产品的高质量,三方面的因素至关重要,它们分别是高品质的紧套光纤光缆、高精度的陶瓷插针和装配散件,以及优良的装配加工工艺:

  就光纤而言,光纤对于连接器性能的影响主要反映在光纤本身的衰减系数和光纤光缆制造公差(尤其是纤芯/包层同心度误差)上:

对于较长的连接器跳线,光纤本身过大的衰减系数会造成连接器跳线的先天不足,增大光通路中的能量损耗;较大的纤芯/包层同心度误差易造成纤芯的横向偏离。

因此,高品质的光纤对于产品的低插损是至关重要的。

  就陶瓷插针而言,较小的同心度误差以及内孔直径和光纤包层外径的良好的匹配(即小间隙)也可减小纤芯的横向偏离,降低插损;同时,高精度装配散件可保证产品在接续中处于充分对接和良好的受力状态,直接影响回波损耗的大小。

  而优良的产品制造技术,包括完善的过程控制,精良的研磨、检测设备,及与之相配套的研磨抛光工艺和质量监控,使得产品在满足高质量端面和光学特性指标的同时,可根据客户的不同要求在相应的标准要求范围内调整插芯的端面几何参数,提高系统接续和使用可靠性。

  作为美国康宁公司在中国的合资企业,成都康宁光缆有限公司引进美国康宁公司全套的原材料、生产设备、生产技术、检验程序和管理体系,面向中国市场提供高品质的光纤连接器。

  对于原材料之一的紧套光缆及光纤,成都康宁光缆全部采用美国康宁产光纤,依托康宁公司全球领先的光缆制造技术,制造出国内领先水平的紧套光缆,并用之于本公司的连接器跳线的生产,确保光纤光缆原材料的品质。

图二和图三即是本公司采用的康宁公司G652光纤的主要特性参数,其纤芯/包层同心度误差和衰减系数统计值均远好于国内相关行业标准的要求(行业标准的要求分别为≤0.5μm和≤0.5dB/km):

下载(19.57KB)

光纤连接器性能简介(摘自光学设计论坛)

2006-10-1023:

51

下载(20.19KB)

光纤连接器性能简介(摘自光学设计论坛)

2006-10-1023:

51

 同时,成都康宁光缆采用购自美国康宁公司的连接器预组装散件,不但产品的外形较国内常用的散件美观(如图四所示),且由于预组装后的散件数量大大减少,降低了组装复杂度,提高了产品装配的可靠性。

此外,由于此类散件主要采用日本京瓷公司生产的陶瓷插针,具备较小的同心度误差,以及较小内径(φ0.1255mm左右)使得光纤包层和插针内孔良好匹配。

这些,为产品的良好的光学性能提供了可靠保证

下载(25.09KB)

光纤连接器性能简介(摘自光学设计论坛)

2006-10-1023:

52

  运用先进的研磨、检测设备和康宁公司成熟的生产工艺,以及完善的质量保证体系,辅之以现代化企业管理应用软件SAP(R/3)系统对生产过程中物料管理和能耗等的监控和优化,使得成都康宁光缆可充分保证连接器产品的插入损耗和回波损耗值均好于现有的行业标准,产品检测的典型值更远高于标准的要求,产品性能和质量稳定性居于国内领先水平。

光缆基本知识介绍

一、        光纤的组成与分类

1、  光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。

塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。

2、  石英光纤的结构:

石英光纤由纤芯、包层及涂覆层组成,其结构如图:

光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。

3、石英光纤的分类

单模光纤

G.652A(B1.1简称B1)

G.652B(B1.1简称B1)

G.652C(B1.3)

G.652D(B1.3)

G.655A光纤(B4)(长途干线使用)

G.655B光纤(B4)(长途干线使用)

多模光纤

50/125(A1a简称A1)

62.5/125(A1b)

二、光缆的结构

1、  室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。

每种光缆的结构特点:

①  中心管式光缆(执行标准:

YD/T769-2003):

光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。

②    层绞式光缆(执行标准:

YD/T901-2001):

加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。

此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。

绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。

层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。

③    骨架式光缆:

加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。

该种结构光缆在国内较少见,所占的比例较小。

④    8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。

通常有中心管式与层绞式8字型自承式光缆。

5煤矿用阻燃光缆(执行标准:

Q/M01-2004企业标准):

与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。

按结构可分入中心管式光缆与层绞式光缆两类结构中。

2、室内光缆

室内光缆按光纤芯数分类,主要有单芯、双芯及多芯光缆等。

室内光缆主要由紧套光纤,纺纶及PVC外护套组成。

根据光纤类型可分为单模及多模两大类,单模室内缆通常外护套颜色为黄色,多模室内缆通常外护套颜色为橙色,还有部分室内缆的外护套颜色为灰色。

三、光缆型号的命名方法(YD/T908-2000)

1、光缆型式由五部分组成

                                            

I、表示光缆类别

GY——通信用室外光缆

GJ——室内光缆

MG——煤矿用光缆

Ⅱ、加强构件类型

(无型号)——金属加强构件

F——非金属加强构件

Ⅲ、结构特征

D——光纤带结构

(无符号)——松套层绞式结构

X——中心管式结构

G——骨架式结构

T——填充式

Z——阻燃结构

C8——8字型自承式结构

Ⅳ、护层

Y——聚乙烯护层

W——夹带钢丝钢—聚乙烯粘结护层

S——钢—聚乙烯粘结护层

A——铝—聚乙烯粘结护层

V——聚氯乙烯护套

Ⅴ、外护层

53—皱纹钢带纵包铠装聚乙烯护套

23—绕包钢带铠装聚乙烯护套

33—细钢丝绕包铠装聚乙烯护套

43—粗钢丝绕包铠装聚乙烯护套

333—双层细钢丝绕包铠装聚乙烯护套

2、光缆规格的表示法

按光缆中所含的光纤数及光纤的类别来表示光缆的规格。

例:

4根G.652单模光纤的光缆规格表示为4B1.1或4B1,若同一根光缆中含有不同种类的光纤,则在规格中间用‘+’号相连。

若含有4根多模50/125的光纤,则表示为4A1a或4A1。

3、本公司常用型号说明

GYXTW——金属加强构件、中心管填充式、夹带钢丝的钢-聚乙烯粘结护层通信用室外光缆,适用于管道及架空敷设。

GYXTW53——金属加强构件、中心管填充式、夹带钢丝的钢-聚乙烯粘结护套、纵包皱纹钢带铠装聚乙烯护层通信用室外光缆,适用于直埋敷设。

GYTA——金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套通信用室外光缆,适用于管道及架空敷设。

GYTS——金属加强构件、松套层绞填充式、钢-聚乙烯粘结护套通信用室外光缆,适用于管道及架空敷设。

GYTY53——金属加强构件、松套层绞填充式、聚乙烯护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆,适用于直埋敷设。

GYTA53——金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆,适用于直埋敷设。

GYTA33——金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套、单细圆钢丝铠装、聚乙烯套通信用室外光缆,适用于直埋及水下敷设。

GYFTY——非金属加强构件、松套层绞填充式、聚乙烯护套通信用室外光缆,适用于管道及架空敷设,主要用于有强电磁危害的场合。

GYXTC8S——金属加强构件、中心管填充式、8字型自承式、钢聚乙烯粘结护套通信用室外光缆,适用于自承式架空敷设。

GYTC8S——金属加强构⑺商撞?

SPANclass=GramE>绞填充式、8字型自承式、钢聚乙烯粘结护套通信用室外光缆,适用于自承式架空敷设。

ADSS-PE——非金属加强构件、松套层绞填充式、圆型自承式、纺纶加强聚乙烯护套通信用室外光缆,适用于高压铁塔自承式架空敷设。

MGTJSV——金属加强构件、松套层绞填充式、钢聚乙烯粘结护套、聚氯乙烯外护套煤矿用阻燃通信光缆,适用于煤矿井下敷设。

GJFJV——非金属加强构件、紧套光纤、聚氯乙烯护套室内通信光缆,主要用于大楼及室内敷设或做光缆跳线使用。

四、光缆的使用场合及主要性能指标

光缆的使用场合:

一般情况,单护套光缆适用于架空和管道,而双护套光缆适用于直埋。

室内光缆适用于大楼及室内使用。

光缆主要性能指标

①    衰减:

衰减指标为光缆中重要的指标,在生产过程中对衰减指标进行检测,可以发现生产及工艺中存在的问题。

各类光纤衰减指标要求(A级光纤):

B1.1(单模):

1310nm≤0.36db/km

1550nm≤0.22db/km

B4(单模):

1550nm≤0.22db/km

A1a(多模50/125):

850nm≤2.5db/km

1300nm≤0.7db/km

A1b(多模62.5/125):

850nm≤3.0db/km

1300nm≤0.8db/km

②    光纤其它指标

单模光纤:

模场直径、截止波长、色散、零色散波长、零色散斜率、芯包同芯度误差、包层直径、涂覆层直径、偏振模色散系数(PMD)等。

多模光纤:

数值孔径、带宽、芯径、包层直径、包层不圆度、涂覆层直径、芯包同芯度误差、涂层不圆度、涂层/包层同芯度误差等。

③    光缆机械性能

拉伸、压扁、反复弯曲、扭转、冲击等。

④    光缆环境性能

光缆高低温性能(-40℃~+60℃)、渗水性能、滴流性能。

⑤    其它

钢、铝带电气导通性,钢铝带搭接宽度,PE护套厚度,计米准确性。

五、光缆工艺流程

1、主要光缆的工艺流程如下:

2、光纤着色工艺

着色工艺生产线的目的是给光纤着上鲜明、光滑、稳定可*的各种颜色,以便在光缆生产过程中和光缆使用过程中很容易地辩认光纤。

着色工艺使用的主要原材料为光纤及着色油墨,着色油墨颜色按行业标准分为12种,其中按广电行业标准及信息产业部标准规定的色谱排列是不一样的,广电标准的色谱排列如下:

本(白)、红、黄、绿、灰、黑、蓝、橙、棕、紫、粉红、青绿,信息产业部行业标准的色谱排列如下:

蓝、桔、绿、棕、灰、本(白)、红、黑、黄、紫、粉红、青绿。

在不影响识别的情况下允许使用本色代替白色。

现本公司采用的色谱排列按广电标准进行,在用户要求时也可按信息产业部标准色谱排列。

在用户要求每管光纤数在12芯以上时,可根据需要用不同的颜色按不同的比例调配出其它颜色来对光纤进行区分。

光纤着色后应满足以下各方面的要求:

1、着色光纤颜色不迁移,不褪色(用丁酮或酒精擦拭也如此)。

2、光纤排线整齐,平整,不乱线,不压线。

3、光纤衰减指标达到要求,OTDR测试曲线无台阶等现象。

光纤着色工艺使用的设备为光纤着色机,光纤着色机由光纤放线部分,着色模具及供墨系统,紫外线固化炉,牵引,光纤收线及电器控制部分等组成。

主要原理为紫外固化油墨经着色模具涂覆于光纤表面,经过紫外线固化炉固化后固定于光纤表面,形成易于分色的光纤。

使用的油墨为紫外固化型油墨。

3、光纤二套工艺

光纤二次套塑工艺就是选用合适的高分子材料,采用挤塑的方法,在合理的工艺条件下,给光纤套上一个合适的松套管,同时在管与光纤之间,填充一种化学物理性能长期稳定、粘度合适、防水性能优良、对光纤有长期良好保护性能、与套管材料完全相容的光纤专用油膏。

二套工艺作为光缆工艺中的关健工序,控制的主要指标有:

1、光纤余长控制。

2、松套管的外径控制。

3、松套管的壁厚控制。

4、管内油膏的充满度。

5、对于分色束管,颜色应鲜明,一致,易于分色。

光纤二次套塑工艺使用的设备为光纤二次套塑机,设备组成由光纤放线架,油膏填充装置,上料烘干装置,塑料挤出主机,温水冷却水槽,轮式牵引,冷水冷却水槽,吹干装置,在线测径仪,皮带牵引,储线装置,双盘收线及电器控制系统等组成。

4、成缆工艺

成缆工艺又称绞缆工艺,是光缆制造过程中的一道重要工序。

成缆的目的是为了增加光缆的柔软性及可弯曲度,提高光缆的抗拉能力和改善光缆的温度特性,同时通过对不同根数松套管的组合而制造出不同芯数的光缆。

成缆工艺主要控制的工艺指标有:

1、成缆节距。

2、扎纱节距,扎纱张力。

3、放线、收线张力。

成缆工艺使用的设备为光缆成缆机,设备组成由加强件放线装置,束管放线装置,SZ绞合台,正反扎纱装置,双轮牵引,引线及电器控制系统等组成。

5、护套工艺

根据光缆不同的使用敷设条件,缆芯外加上不同的护套,以满足不同条件下以光纤的机械保护。

光缆护套作为光缆抵御外界各种特殊复杂环境的保护层必须具有优良的机械性能、耐环境性能、耐化学腐蚀性能。

机械性能指光缆在铺设、使用过程中,必然受到各种机械外力的拉伸、侧压、冲击、扭转、反复弯曲、弯折作用,光缆护套必须能经受这些外力的作用。

耐环境性能指光缆在使用寿命中,要能经受住外界正常的此外线辐射、温度变化、潮气的侵蚀。

耐化学腐蚀性能指光缆护套能耐受特殊环境中的酸、碱、油污等的腐蚀。

对于阻燃等特殊性能则必须采用特殊的塑料护套来保证性能。

护套工艺要控制的工艺指标有:

1、钢、铝带与缆芯的间隙合理。

2、钢、铝带的搭接宽度满足要求。

3、PE护层的厚度满足工艺要求。

4、印字清晰,完整,米标准确。

5、收排线整齐,平整。

护套工艺使用的设备为光缆护套挤塑机,设备组成由缆芯放线装置,钢丝放线装置,钢(铝)纵包放带轧纹成型装置,油膏填充装置,上料烘干装置,90挤塑主机,冷却水槽,皮带牵引,龙门收线装置及电器控制系统等组成。

常用光纤连接器知识

常用光纤连接器知识

在安装任何光纤系统时,都必须***虑以低损耗的方法把光纤或光缆相互连接起来,以实现光链路的接续。

光纤链路的接续,又可以分为永久性的和活动性的两种。

永久性的接续,大多采用熔接法、粘接法或固定连接器来实现;活动性的接续,一般采用活动连接器来实现。

本文将对活动连接器做一简单的介绍。

光纤活动连接器,俗称活接头,一般称为光纤连接器,是用于连接两根光纤或光缆形成连续光通路的可以重复使用的无源器件,已经广泛应用在光纤传输线路、光纤配线架和光纤测***仪器、仪表中,是目前使用数量最多的光无源器件。

2.光纤连接器的一般结构

光纤连接器的主要用途是用以实现光纤的接续。

现在已经广泛应用在光纤通信系统中的光纤连接器,其种类众多,结构各异。

但细究起来,各种类型的光纤连接器的基本结构却是一致的,即绝大多数的光纤连接器的一般采用***精密组件(由两个插针和一个耦合管共三个部分组成)实现光纤的对准连接。

这种方法是将光纤穿入并固定在插针中,并将插针表面进行抛光处理后,在耦合管中实现对准。

插针的外组件采用金属或非金属的材料制作。

插针的对接端必须进行研磨处理,另一端通常采用弯曲限制构件来支撑光纤或光纤软缆以释放应力。

耦合管一般是由陶瓷、或青铜等材料制成的两半合成的、紧固的圆筒形构件做成,多配有金属或塑料的法兰盘,以便于连接器的安装固定。

为尽量精确地对准光纤,对插针和耦合管的加工精度要求很***。

3.光纤连接器的性能

光纤连接器的性能,首先是光学性能,此外还要***虑光纤连接器的互换性、重复性、抗拉强度、温度和插拔次数等。

(1)光学性能:

对于光纤连接器的光性能方面的要求,主要是插入损耗和回波损耗这两个最基本的参数。

插入损耗(InsertionLoss)即连接损耗,是指因连接器的导入而引起的链路有效光功率的损耗。

插入损耗越小越好,一般要求应不大于0.5dB。

回波损耗(ReturnLoss,ReflectionLoss)是指连接器对链路光功率反射的抑制能力,其典型值应不小于25dB。

实际应用的连接器,插针表面经过了专门的抛光处理,可以使回波损耗更大,一般不低于45dB。

(2)互换性、重复性

光纤连接器是通用的无源器件,对于同一类型的光纤连接器,一般都可以任意组合使用、并可以重复多次使用,由此而导入的附加损耗一般都在小于0.2dB的范围内。

(3)抗拉强度

对于做好的光纤连接器,一般要求其抗拉强度应不低于90N。

(4)温度

一般要求,光纤连接器必须在-40oC~+70oC的温度下能够正常使用。

(5)插拔次数

目前使用的光纤连接器一般都可以插拔l000次以上。

4.部分常见光纤连接器

按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器的插针端面可分为FC、PC(UPC)和APC;按光纤芯数分还有单芯、多芯之分。

在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。

以下简单的介绍一些目前比较常见的光纤连接器:

(1)FC型光纤连接器

这种连接器最早是由日本NTT研制。

FC是FerruleConnector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。

最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式(FC)。

此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提***回波损耗性能较为困难。

后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提***。

(2)SC型光纤连接器

这是一种由日本NTT公司开发的光纤连接器。

其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。

此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较***,安装密度***。

(3)双锥型连接器(BiconicConnector)

这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。

(4)DIN47256型光纤连接器

这是一种由德国开发的连接器。

这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。

与FC型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1