【答案】 A
【解析】 对题图中的A点受力分析,则由图(a)可得Fa=Fa′=2mgcos30°=
mg
由图(b)可得tan30°=
则Fb=Fb′=
mg
故Fa=Fb.
题型三 摩擦力的分析与计算
1.静摩擦力的分析
(1)物体处于平衡状态(静止或匀速直线运动),利用力的平衡条件来判断静摩擦力的大小.
(2)物体有加速度时,若只受静摩擦力,则Ff=ma.若除受静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.
2.滑动摩擦力的分析
滑动摩擦力的大小用公式Ff=μFN来计算,应用此公式时要注意以下几点:
(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;FN为两接触面间的正压力,其大小不一定等于物体的重力.
(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.
3.静摩擦力的有无和方向的判断方法
(1)假设法:
利用假设法判断的思维程序如下:
(2)状态法:
先判断物体的状态(即加速度的方向),再利用牛顿第二定律(F合=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.
(3)牛顿第三定律法:
先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.
【例题1】(2017·全国卷Ⅱ)如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为( )
A.2-
B.
C.
D.
【答案】 C
【解析】 当F水平时,根据平衡条件得F=μmg;当保持F的大小不变,而方向与水平面成60°角时,由平衡条件得Fcos60°=μ(mg-Fsin60°),联立解得,μ=
,故选项C正确.
【例题2】(2019·湖南省永州市教研室名师筛选高考信息卷)如图所示,一足够长的斜面
体静置于粗糙水平地面上,一小物块沿着斜面体匀速下滑,现对小物块施加一水平向右的力
F,当物块运动到最低点之前,下列说法正确的是
A.物块与斜面体间的弹力不变
B.物块与斜面体间的摩擦力增大
C.斜面体与地面间的弹力不变
D.斜面体与地面间的摩擦力始终为0
【答案】BD
【解析】AB、设斜面的倾角为α,不加推力F时,滑块匀速下滑,受重力、支持力和摩擦力,根据共点力平衡条件,支持力N=mgcosα,摩擦力f=mgsinα,故动摩擦因数μ=f/N=tanα;对小物块施加一水平向右的恒力F后,支持力N′=mgcosα+Fsinα,变大;滑动摩擦力f′=μN′,也变大;故A错误,B正确;CD、不加推力F时,根据平衡条件,滑块受的支持力和摩擦力的合力竖直向上;故根据牛顿第三定律,滑块对斜面体的压力和摩擦力的合力竖直向下,故斜面体相对地面没有滑动趋势,故斜面体不受摩擦力;加上水平推力后,滑块对斜面体的摩擦力和压力同比例增加,其合力方向依旧是竖直向上(大小变大,方向不变);同理,根据牛顿第三定律,滑块对斜面体的压力和摩擦力的合力依旧是竖直向下(大小变大,方向不变),故斜面体相对地面仍然没有滑动趋势,故斜面体仍然不受摩擦力,但对地压力变大了;故C错误,D正确;故选BD。
题型四 摩擦力和三类突变
【类型1】 “静—静”突变
物体在摩擦力和其他力的共同作用下处于静止状态,当作用在物体上的其他力的合力发生变化时,物体虽然仍保持相对静止,但物体所受的静摩擦力发生突变.
【例题1】(2019·福建省三明市质检)如图所示,质量为10kg的物体A拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N时,物体A处于静止状态.若小车以1m/s2的加速度向右运动,则(g=10m/s2)( )
A.物体A相对小车向右运动
B.物体A受到的摩擦力减小
C.物体A受到的摩擦力大小不变
D.物体A受到的弹簧的拉力增大
【答案】 C
【解析】 由题意得,物体A与小车的上表面间的最大静摩擦力Ffm≥5N,小车加速运动时,假设物体A与小车仍然相对静止,则物体A所受合力F合=ma=10N,可知此时小车对物体A的摩擦力为5N,方向向右,且为静摩擦力,所以假设成立,物体A受到的摩擦力大小不变,故选项A、B错误,C正确;同理可知,物体A受到的弹簧的拉力大小不变,故D错误.
【类型2】 “静—动”突变
物体在摩擦力和其他力作用下处于静止状态,当其他力变化时,如果物体不能保持静止状态,则物体受到的静摩擦力将“突变”成滑动摩擦力.
【例题2】在探究静摩擦力变化规律及滑动摩擦力变化规律的实验中,设计了如图甲所示的演示装置,力传感器A与计算机连接,可获得力随时间变化的规律,将力传感器固定在光滑水平桌面上,测力端通过细绳与一滑块相连(调节力传感器高度可使细绳水平),滑块放在较长的小车上,小车一端连接一根轻绳并跨过光滑的轻质定滑轮系一只空沙桶(调节滑轮可使桌面上部轻绳水平),整个装置处于静止状态.实验开始时打开力传感器同时缓慢向沙桶里倒入沙子,小车一旦运动起来,立即停止倒沙子,若力传感器采集的图象如图乙,则结合该图象,下列说法正确的是( )
A.可求出空沙桶的重力
B.可求出滑块与小车之间的滑动摩擦力的大小
C.可求出滑块与小车之间的最大静摩擦力的大小
D.可判断第50s后小车做匀速直线运动(滑块仍在车上)
【答案】 ABC
【解析】 t=0时刻,力传感器显示拉力为2N,则滑块受到的摩擦力为静摩擦力,大小为2N,由小车与空沙桶受力平衡可知空沙桶的重力也等于2N,A选项正确;t=50s时刻摩擦力达到最大值,即最大静摩擦力为3.5N,同时小车启动,说明带有沙子的沙桶重力等于3.5N,此时摩擦力立即变为滑动摩擦力,故摩擦力突变为3N的滑动摩擦力,B、C选项正确;此后由于沙子和沙桶重力3.5N大于滑动摩擦力3N,故50s后小车将做匀加速运动,D选项错误.
【类型3】 “动—静”突变
在滑动摩擦力和其他力作用下,做减速运动的物体突然停止滑行时,物体将不再受滑动摩擦力作用,滑动摩擦力“突变”为静摩擦力.
【例题3】如图所示,斜面固定在地面上,倾角为θ=37°(sin37°=0.6,cos37°=0.8).质量为1kg的滑块以初速度v0从斜面底端沿斜面向上滑行(斜面足够长,该滑块与斜面间的动摩擦因数为0.8),则该滑块所受摩擦力Ff随时间变化的图象是下图中的(取初速度v0的方向为正方向,g=10m/s2)( )
【答案】 B
【解析】 滑块上升过程中受滑动摩擦力,Ff=μFN,FN=mgcosθ,联立得Ff=6.4N,方向沿斜面向下.当滑块的速度减为零后,由于重力的分力mgsinθ<μmgcosθ,滑块不动,滑块受到的摩擦力为静摩擦力,由平衡条件得Ff′=mgsinθ,代入可得Ff′=6N,方向沿斜面向上,故选项B正确.
题型五 共点力的合成
1.两个共点力的合成
|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,合力最大.
2.三个共点力的合成
(1)最大值:
三个力共线且同向时,其合力最大,为F1+F2+F3.
(2)最小值:
任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
3.几种特殊情况的共点力的合成
类型
作图
合力的计算
互相垂直
F=
tanθ=
两力等大,夹角为θ
F=2F1cos
F与F1夹角为
两力等大,夹角为120°
合力与分力等大
F′与F夹角为60°
4.力合成的方法
(1)作图法
(2)计算法
若两个力F1、F2的夹角为θ,如图所示,合力的大小可由余弦定理得到:
F=
tanα=
.
【例题】(2019·山东省临沂市一模)如图所示,一物块在斜向下的拉力F的作用下沿光滑的水平地面向右运动,那么物体受到的地面的支持力FN与拉力F的合力方向是( )
A.水平向右B.向上偏右
C.向下偏左D.竖直向下
【答案】 B
【解析】 对物体受力分析可知,其受重力、支持力、拉力.若拉力F与水平方向夹角为θ,在竖直方向,FN=mg+Fsinθ,支持力FN与F在竖直方向的分力之和Fy=mg,方向向上,F在水平方向的分力Fx=Fcosθ,故合力F合=
=
,方向向上偏右,故B正确.
题型六 力分解的两种常用方法
1.效果分解法
按力的作用效果分解(思路图)
2.正交分解法
(1)定义:
将已知力按互相垂直的两个方向进行分解的方法.
(2)建立坐标轴的原则:
一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.
(3)方法:
物体受到多个力F1、F2、F3、…作用,求合力F时,可把各力向相互垂直的x轴、y轴分解.
x轴上的合力Fx=Fx1+Fx2+Fx3+…
y轴上的合力Fy=Fy1+Fy2+Fy3+…
合力大小F=
合力方向:
与x轴夹角为θ,则tanθ=
.
【例题】如图所示,墙上有两个钉子a和b,它们的连线与水平方向的夹角为45°,两者的高度差为l.一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物.在绳上距a端
的c点有一固定绳圈.若绳圈上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比
为( )
A.
B.2C.
D.
【答案】 C
【解析】 解法一(力的效果分解法):
钩码的拉力F等于钩码重力m2g,将F沿ac和bc方向分解,两个分力分别为Fa、Fb,如图甲所示,其中Fb=m1g,由几何关系可得cosθ=
=
,又由几何关系得cosθ=
,联立解得
=
.
解法二(正交分解法):
绳圈受到Fa、Fb、F三个力作用,如图乙所示,将Fb沿水平方向和竖直方向正交分解,由竖直方向受力平衡得m1gcosθ=m2g;由几何关系得cosθ=
,联立解得
=
.