土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx

上传人:b****8 文档编号:10522898 上传时间:2023-02-17 格式:DOCX 页数:18 大小:36.80KB
下载 相关 举报
土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx_第1页
第1页 / 共18页
土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx_第2页
第2页 / 共18页
土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx_第3页
第3页 / 共18页
土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx_第4页
第4页 / 共18页
土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx

《土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx》由会员分享,可在线阅读,更多相关《土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx(18页珍藏版)》请在冰豆网上搜索。

土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文.docx

土木工程受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为大学毕业论文外文文献翻译及原文

 

毕业设计(论文)

外文文献翻译

 

文献、资料中文题目:

受弯钢框架结点在变化轴向荷载和侧向位移的作用下的周期性行为

文献、资料英文题目:

文献、资料来源:

文献、资料发表(出版)日期:

院(部):

专业:

土木工程

班级:

姓名:

学号:

指导教师:

翻译日期:

2017.02.14

 

土木工程建筑外文文献及翻译

Cyclicbehaviorofsteelmomentframeconnectionsundervaryingaxialloadandlateraldisplacements

Abstract

Thispaperdiscussesthecyclicbehavioroffoursteelmomentconnectionstestedundervariableaxialloadandlateraldisplacements.Thebeamspecim-ensconsistedofareducedbeamsection,wingplatesandlongitudinalstiffeners.Thetestspecimensweresubjectedtovaryingaxialforcesandlateraldisplace-mentstosimulatetheeffectsonbeamsinaCoupled-GirderMoment-ResistingFramingsystemunderlateralloading.Thetestresultsshowedthatthespecim-ensrespondedinaductilemannersincetheplasticrotationsexceeded0.03radwithoutsignificantdropinthelateralcapacity.Thepresenceofthelongitudin- alstiffenerassistedintransferringtheaxialforcesanddelayedtheformationofweblocalbuckling.

1.Introduction  

Aimedatevaluatingthestructuralperformanceofreduced-beamsection

(RBS)connectionsunderalternatedaxialloadingandlateraldisplacement,fourfull-scalespecimensweretested.ThesetestswereintendedtoassesstheperformanceofthemomentconnectiondesignfortheMosconeCenterExp-ansion under the DesignBasisEarthquake(DBE)andtheMaximumConsideredEarthquake(MCE).PreviousresearchconductedonRBSmomentconnections[1,2]showedthatconnectionswith RBSprofilescanachieverotationsinexcessof0.03rad.However,doubtshavebeencastonthequalityoftheseismicperformanceoftheseconnectionsundercombined axialandlateralloading.

TheMosconeCenterExpansionisathree-story,71,814m2(773,000ft2)structurewithsteelmomentframesasitsprimarylateralforce-resistingsystem.AthreedimensionalperspectiveillustrationisshowninFig.1.Theoverallheightofthebuilding,atthehighestpointoftheexhibitionroof,isapproxima-tely35.36m(116ft)abovegroundlevel.Theceilingheightattheexhibitionhallis8.23m(27ft),andthetypicalfloor-to-floorheightinthebuildingis11.43m(37.5ft).ThebuildingwasdesignedastypeIaccordingtotherequi-rementsofthe1997UniformBuildingCode.

TheframingsystemconsistsoffourmomentframesintheEast–Westdirect-ion,oneoneithersideofthestairtowers,andfourframesintheNorth–Southdirection,oneoneithersideofthestairandelevatorcoresintheeastendandtwoatthewestendofthestructure[4].Becauseofthestoryheight,thecon-ceptoftheCoupled-GirderMoment-ResistingFramingSystem(CGMRFS)wasutilized.

Bycouplingthegirders,thelateralload-resistingbehaviorofthemomentframingsystemchangestoonewherestructuraloverturningmomentsareresistedpartiallybyanaxialcompression–tensioncoupleacrossthegirdersystem,ratherthanonlybytheindividualflexuralactionofthegirders.Asaresult,astifferlateralloadresistingsystemisachieved.Theverticalelementthatconnectsthegirdersisreferredtoasacouplinglink.Couplinglinksareanalogoustoandservethesamestructuralroleaslinkbeamsineccentricallybracedframes.Couplinglinksaregenerallyquiteshort,havingalargeshear-to-momentratio.

Underearthquake-typeloading,theCGMRFSsubjectsitsgirderstowariab-bleaxialforcesinadditiontotheirendmoments. Theaxialforcesin the

 Fig.1.MosconeCenterExpansionProjectinSanFrancisco,CA

girdersresultfromtheaccumulatedshearinthelink.

 2. AnalyticalmodelofCGMRF

Nonlinearstaticpushoveranalysiswasconductedonatypicalone-baymodeloftheCGMRF.Fig.2showsthedimensionsandthevarioussectionsofthe10in)andthe254mm(11/8inmodel.Thelinkflangeplateswere28.5mm183/4in).TheSAP2000computer476mm(3/8inwebplatewas9.5mmprogramwasutilizedinthepushoveranalysis[5].Theframewascharacterizedasfullyrestrained(FR).FRmomentframesarethoseframesfor1170whichnomorethan5%ofthelateraldeflectionsarisefromconnectiondeformation[6].The5%valuerefersonlytodeflectionduetobeam–columndeformationandnottoframedeflectionsthatresultfromcolumnpanelzonedeformation[6,9].

 Theanalysiswasperformedusinganexpectedvalueoftheyieldstressandultimatestrength.Thesevalueswereequalto372MPa(54ksi)and518MPa(75ksi),respectively.Theplastichinges’load–deformationbehaviorwasapproximatedbythegeneralizedcurvesuggestedbyNEHRPGuidelinesfortheSeismicRehabilitationofBuildings[6]asshowninFig.3.△ywascalcu- latedbasedonEqs.(5.1)and(5.2)from[6],asfollows:

     P–Mhingeload–deformationmodelpointsC,DandEarebasedonTable5.4from[6]for

△ywastakenas0.01radperNote3in[6],Table5.8.Shearhingeload-load–deformationmodelpointsC,DandEarebasedonTable5.8[6],LinkBeam,Itema.AstrainhardeningslopebetweenpointsBandCof3%oftheelasticslopewasassumedforbothmodels.

Thefollowingrelationshipwasusedtoaccountformoment–axialloadinteraction[6]:

 

whereMCEistheexpectedmomentstrength,ZRBSistheRBSplasticsectionmodulus(in3),  istheexpectedyieldstrengthofthematerial(ksi),Pistheaxialforceinthegirder(kips)and istheexpectedaxialyieldforceoftheRBS,equalto  (kips).TheultimateflexuralcapacitiesofthebeamandthelinkofthemodelareshowninTable1.

Fig.4showsqualitativelythedistributionofthebendingmoment,shearforce,andaxialforceintheCGMRFunderlateralload.Theshearandaxialforceinthebeamsarelesssignificanttotheresponseofthebeamsascomparedwiththebendingmoment,althoughtheymustbeconsideredindesign.Thequalita-tivedistributionofinternalforcesillustratedinFig.5isfundamentallythesameforbothelasticandinelasticrangesofbehavior.Thespecificvaluesoftheinternalforceswillchangeaselementsoftheframeyieldandinternalfor- cesareredistributed.ThebasicpatternsillustratedinFig.5,however,remainthesame.

Inelasticstaticpushoveranalysiswascarriedoutbyapplyingmonotonically

increasinglateraldisplacements,atthetopofbothcolumns,asshowninFig.6.AfterthefourRBShaveyieldedsimultaneously,auniformyieldinginthewebandattheendsoftheflangesoftheverticallinkwillform.Thisistheyieldmechanismfortheframe,withplastichingesalsoformingatthebaseofthecolumnsifthey arefixed.ThebaseshearversusdriftangleofthemodelisshowninFig.7.Thesequenceofinelasticactivityintheframeisshownonthefigure.Anelasticcomponent,alongtransition(consequenceofthebeamplastichingesbeingformedsimultaneously)andanarrowyieldplateaucharacterizethepushovercurve.

 Theplasticrotationcapacity,qp,isdefinedasthetotalplasticrotationbeyondwhichtheconnectionstrengthstartstodegradebelow80%[7].ThisdefinitionisdifferentfromthatoutlinedinSection9(AppendixS)oftheAISCSeismicProvisions[8,10].UsingEq.

(2)derivedbyUangandFan[7],anestimateoftheRBSplasticrotationcapacitywasfoundtobe0.037rad:

 

FyfwassubstitutedforRy•Fy[8],whereRyisusedtoaccountforthediffer-ence betweenthenominalandtheexpectedyieldstrengths(Grade50steel,Fy=345MPaandRy=1.1areused).

3.Experimentalprogram

Theexperimentalset-upforstudyingthebehaviorofaconnectionwasbasedonFig.6(a).Usingtheplasticdisplacementdp,plasticrotationgp,andplasticstorydriftangleqpshowninthefigure,fromgeometry,itfollowsthat:

 And:

inwhichdandgincludetheelasticcomponents.Approximationsasaboveareused forlargeinelasticbeamdeformations.ThediagraminFig.6(a)suggestthatasub assemblagewithdisplacementscontrolledinthemannershowninFig.6(b)can representtheinelasticbehaviorofatypicalbeaminaCGMRF.

Thetestset-upshowninFig.8wasconstructedtodevelopthemechanismshown inFig.6(a)and(b).Theaxialactuatorswereattachedtothree 2438mm×1219mm×1219mm(8ft×4ft×4ft)RCblocks.Theseblockswere tensionedtothelaboratoryfloorbymeansoftwenty-four32mmdiameterdywidag rods.Thisarrangementpermittedreplacementofthespecimenaftereachtest.

Therefore,theforceappliedbytheaxialactuator,P,canberesolvedintotwoorthogonalcomponents,PaxialandPlateral.Sincetheinclinationangleoftheaxialactuatordoesnotexceed,thereforePaxialisapproximatelyequaltoP[4].However,thelateral3.0component,Plateral,causesanadditionalmomentatthebeam-tocolumnjoint.Iftheaxialactuatorscompressthespecimen,thenthelateralcomponentswillbeaddingtothelateralactuatorforces,whileiftheaxialactuatorspullthespecimen,thePlateralwillbeanopposingforcetothelateralactuators.Whentheaxialactuatorsundergo

 axialactuatorsundergoalateraldisplacement_,theycauseanadditionalmomentatthebeam-to-columnjoint(P-△effect).Therefore,themomentatthebeam-tocolumnjointisequalto:

whereHisthelateralforces,Listhearm,Pistheaxialforceand_isthelateraldisplacement.

 Fourfull-scaleexperimentsofbeamcolumnconnectionswereconducted.

ThemembersizesandtheresultsoftensilecoupontestsarelistedinTable2

AllofthecolumnsandbeamswereofA572Grade50steel(Fy  344.5MPa).Theactualmeasuredbeamflangeyieldstressvaluewasequalto372MPa(54ksi),whilethe ultimatestrengthrangedfrom502MPa(72.8ksi)to543MPa(78.7ksi).

Table3showsthevaluesoftheplasticmomentforeachspecimen(basedon measuredtensilecou

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 制度规范

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1