偏振光的研究.docx

上传人:b****7 文档编号:9671525 上传时间:2023-02-05 格式:DOCX 页数:11 大小:165.23KB
下载 相关 举报
偏振光的研究.docx_第1页
第1页 / 共11页
偏振光的研究.docx_第2页
第2页 / 共11页
偏振光的研究.docx_第3页
第3页 / 共11页
偏振光的研究.docx_第4页
第4页 / 共11页
偏振光的研究.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

偏振光的研究.docx

《偏振光的研究.docx》由会员分享,可在线阅读,更多相关《偏振光的研究.docx(11页珍藏版)》请在冰豆网上搜索。

偏振光的研究.docx

偏振光的研究

实验题目:

偏振光的研究

光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光的偏振现象最早是牛顿在1704年至1706年间引入光学的;马吕斯在1809年首先提出“光的偏振”这一术语,并在实验室发现了光的偏振现象;麦克斯韦在1865年至1873年间建立了光的电磁理论,从本质上说明了光的偏振现象。

按电磁波理论,光是横波,它的振动方向和光的传播方向垂直,因此可以分成五种偏振态:

自然光(非偏振光)、线偏振光、部分偏振光、园偏振光和椭圆偏振光。

自然光是各方向的振幅相同的光,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势。

若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等。

线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。

部分偏光可以看成自然光与线偏光混合而成,即它有某个方向的振幅占优势。

园偏光和椭圆偏振光是光矢量末端在垂直于传播方向的平面上的轨迹呈圆或椭圆。

通过对偏振光的研究人们发明和制造了一些偏振光的元件,如:

偏振片、波片和各种偏振棱镜等。

利用光的偏振现象在物理学方面可测量材料的厚度和折射率,可以了解材料的微观结构。

力学上利用偏振光的干涉现象检测材料应力分布,进一步应用于建筑工程学方面就可以检测桥梁和水坝的安全度。

实验原理

为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:

产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。

1.产生偏振光的元件

在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。

根据这些元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。

在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。

将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。

我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。

反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。

该方法是可以获得线偏振光的方法之一。

如图1所示。

因为此时

,若n1=1(为空气的折射率),则

(1)

S分量

P分量

 

叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。

由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产生偏振光(玻璃堆)。

图2晶体的双折射

第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。

在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。

o光和e光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。

改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o光和e光的传播速度相等,折射率相同。

晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。

包含光轴和任一光线的平面叫对应于该光线的主平面,o光电矢量的振动方向垂直于o光主平面,e光电矢量的振动方向平行于e光主平面。

图3格兰棱镜起偏、检偏原理

格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。

自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e光透过棱镜射出。

第三种是偏振片,它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

它的偏振性能不如格兰棱镜,但优点是价格便宜,且可以得到大面积的。

本实验中采用偏振片作为起偏器和检偏器。

2.波晶片:

又称位相延迟片,是改变光的偏振态的元件。

它是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度vo,ve不同(所以折射率也就不同),所以造成o光和e光通过波晶片的光程也不同。

当两光束通过波晶片后o光的位相相对于e光延迟量为,

(2)

若满足

,即

我们称之为

片,若满足

,即

,我们称之为

片,若满足

,即

我们称之为全波片(m为整数)。

波晶片可以用来检验和改变光的偏振态,如图4所示,在起偏器后加上一个

波片,旋转起偏器或

波片就可以得到园或者椭圆偏振光[细节和方法参见文献2、3]。

波片是椭偏仪中的重要元件,而椭偏仪可以精确测量薄膜的厚度和折射率,是材料科学研究中常用的精密仪器。

 

偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。

马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为

(3)

其中的是检偏器的偏振方向和起偏器偏振方向的夹角。

实验内容:

本实验使用的偏振光实验仪是以分光计改装成的。

仪器构造简图如图5所示,仪

器由1、.半导体激光器(波长650nm)2、硅光电池3、起偏器、4、检偏器、5、分光计

 

 

 

测量误差小于0.5%+1个字。

使用时接上220v电源开机预热15分钟。

检查衰减旋钮是否顺时针到底(注意动作要轻),此时灵敏度最高,数显窗口显示的为标准电流。

如果测量相对值可将衰减旋钮放在其他位置。

按下保持开关可保持当前数值,这时不论被测信号如何改变,光电流不变。

1、仪器调节:

(1)首先利用双平面镜调节放半导体激光器的光管(以下简称管1)使其与仪器的旋转主轴垂直(也就是说与度盘平面平行),同时使分光计载物台与度盘平面平行。

(2)将硅光电池取下调节放硅光电池的光管(以下简称管2),使之与管1同轴。

然后锁紧管2的止动螺钉,遮住激光,然后再插入硅光电池。

(3)检查硅光电池的输出信号是否与数字检流计接好,检流计量程选择1档开关放在1档,调节零点旋钮,使数据显示为“-.000”(负号闪烁)。

2、验证马吕斯定律

检流计仍放在4档,在测量过程中也不要换档。

将起偏器放在光强最强的位置,在管2另一端套上检偏器P2并使竖直方向为0。

然后旋转检偏器P2使检流计的光强最小(仍在4档可以调为0)。

此时可以认为P1与P2偏振方向的夹角为90,记录此时P2偏振方向的绝对角度值、相对角度值和光强值I,以后每隔10记录一次,直到P1与P2偏振方向的夹角为-90,I0为P1与P2偏振方向的夹角为0时的光强值,作出I/I0cos2的关系曲线(090,0-90各一条,用最小二乘法求出斜率和截距,根据马吕斯定律斜率应为1,截距应为0,分析实验的误差)。

3、根据布儒斯特定律测定介质的折射率:

该实验为设计性实验,步骤请见后

4、测量半导体激光器的偏振度

在管1上套上起偏器P1,将量程选择4档开关打到第4档,(将起偏器竖直方向调到0),旋转起偏器找到光强最强的位置,记录角度和光强值Imax。

再将起偏器旋转90,记录角度和光强值Imin。

根据公式计算激光的偏振度P:

(4)

 

5.选作内容:

利用本实验的设备研究1/4波片的性质,说明产生圆偏光、椭圆偏光和线偏光的条件和检测方法。

实验数据及处理:

验证马吕斯定律数据表格1(I0=max(I2))

0

5

10

15

20

25

30

35

40

45

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

I0Cos2

0

2

8

17

30

46

64

84

105

128

I2

0

2

9

18

31

47

65

85

106

128

50

55

60

65

70

75

80

85

90

95

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Cos2

150

171

191

209

225

238

247

253

255

253

I

150

171

192

210

226

239

248

254

255

252

100

105

110

115

120

125

130

135

140

145

10

15

20

25

30

35

40

45

50

55

Cos2

247

238

225

209

191

171

150

128

105

84

I

245

235

221

204

185

164

143

121

99

78

150

155

160

165

170

175

180

60

65

70

75

80

85

90

Cos2

64

46

30

17

8

2

0

I

58

41

26

14

5

1

0

实验数据图像如下:

对I2-I0Cos2(θ)进行线性拟合,其线性相关系数R2=0.999,因故完全可认为其完全相关

也即马吕斯定律成立

误差分析:

实验中误差主要来源于起偏器和检偏器的角度差,开始测量时,使得光强为零,但由于精度限制,检偏器在旋转大约2度的范围内均能使检流计示数为零,因故严格来讲实验中的关系应是I2=I0Cos2(θ-φ),式中φ为检偏计与90度的差值。

另外,起偏器与检偏器的安装平面不能与激光方向完全垂直也会导致实验误差。

2.测量样品的布儒斯特角

测量方法:

用纸遮住光线,是分光计附近进入暗室效果,粗调样品的角度,使反射光线的光强最弱,并锁定载物台,调节起偏器角度使反射光线的光强最弱,此时,起偏器射出的入射光线偏振方向为与载物台平面垂直方向,而当样品位于布儒斯特角时,反射光线的偏振方向应位于平行载物台的入射平面,但入射光并不含沿此方向偏振的分量,故此时反射光线将彻底消失。

微调再调节样品,使反射光线完全消失,记下此时的角度示数θ1,θ1’。

再调节载物台,使反射光线回射入射方向,记下示数θ2,θ2’。

布儒斯特角θB=0.5*(|θ1-θ2|+|θ1’-θ2’|)

实验中进行了三四重复测量,所得平均值:

θB=56°35’σθB=9.8’

θB=56°35’±27’,P=0.95

误差分析:

本实验的误差较大,主要原因在于人眼对光的敏感度有限,消光现象叫难以精确的观察,因故在实验中进行了遮光处理,但还是难以达到便准的暗室的效果,使得消光角度难以测准。

另外,消光角度本身其光强对于角度的导数为零也使得这一极值点较难观察。

3.测量半导体激光仪的偏振度

实验测量中发现I有两个极大值点,两个极小值点,故取其平均值计算

Imax

193.6

180.1

194.2

180.4

194.0

180.0

Imin

49.4

50.7

49.4

50.8

49.5

50.6

Imax=187.05

Imin=50.07

4.选作内容:

利用本实验的设备研究1/4波片的性质,说明产生圆偏光、椭圆偏光和线偏光的条件和检测方法。

椭圆/圆偏振光产生方法:

线性偏振光经过λ/4波晶片即变成椭圆/圆偏振光。

检验方法:

椭圆偏振光——检偏器旋转一周观察是否有消光现象。

圆偏振光——检偏器旋转任意角度光强不变。

本次实验中所产生的“最圆”的偏振光为Imax=32.4,Imin=14.0.

思考题:

如何验证半导体激光器的光是部分偏光而不是椭圆偏光?

答:

旋转检偏器,观察是否会出现消光现象。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 党团建设

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1