从高考竞赛复习资料8牛顿运动定律的应用.docx

上传人:b****8 文档编号:9610924 上传时间:2023-02-05 格式:DOCX 页数:20 大小:171.26KB
下载 相关 举报
从高考竞赛复习资料8牛顿运动定律的应用.docx_第1页
第1页 / 共20页
从高考竞赛复习资料8牛顿运动定律的应用.docx_第2页
第2页 / 共20页
从高考竞赛复习资料8牛顿运动定律的应用.docx_第3页
第3页 / 共20页
从高考竞赛复习资料8牛顿运动定律的应用.docx_第4页
第4页 / 共20页
从高考竞赛复习资料8牛顿运动定律的应用.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

从高考竞赛复习资料8牛顿运动定律的应用.docx

《从高考竞赛复习资料8牛顿运动定律的应用.docx》由会员分享,可在线阅读,更多相关《从高考竞赛复习资料8牛顿运动定律的应用.docx(20页珍藏版)》请在冰豆网上搜索。

从高考竞赛复习资料8牛顿运动定律的应用.docx

从高考竞赛复习资料8牛顿运动定律的应用

牛顿运动定律题型讲解

北京市第八十中学何德强

图1

例1:

光滑水平桌面上静置三只小球,m1=1kg、m2=2kg、m3=3kg,两球间有不可伸长的轻绳相连,且组成直角三角形,α=37°.若在m1上突然施加一垂直于m2、m3连线的力F=10N,求此瞬时m1受到的合力,如图1所示.  

解析:

要求m1在此瞬时受到的合力,应算出m1在此瞬时的加速度a.由于在F作用的瞬时,m2、m3间的绳将松驰,于是可将F沿m1、m2及m1、m3两绳的方向进行分解,然后列式即可求解.

由于m2、m3间的绳将松驰,可将F沿两绳方向分解,有F1=Fcosα,F2=Fsinα.于是

所以a=

=2.33m/s2.由此可得m1在此瞬时受到的合力

           F′=m1a=2.33N.

点评:

本题的关键是判定m2、m3间绳的张力为零,并将F沿另外两强的方向分解.

例2:

如图2所示,质量为m的物体C用两根绳子系住,两绳分别跨过同一高度的滑轮O1和O2后与滑块A、B相连.滑块A的质量为

m,滑块B的质量为2m,分别放在倾角为60°和30°的固定光滑斜面上.当系统平衡时,在物体C上无初速地放上另一质量也为m的物体D,并且C、D立刻粘在一起.试求刚放上D的瞬时物体A和B的加速度.

解析:

先由力的平衡条件求出平衡时C的位置,然后分析失去平衡瞬时的情况.由于各力的方向显而易见,但物体C的加速度方向不清,所幸的是A、B、C三者的初速度均为零,故C、A、B三者沿向不清,所幸的是A、B、C三者的初速度均为零,故C、A、B三者沿绳方向的加速度分量相等,于是可由牛顿第二定律解之.

 

图2

 

图3

先求初始平衡态的情况.

而Tc=mg,故三者互成120°角.

放上D的瞬时,各绳的张力必发生变化.对C的加速度进行分解,如图3所示.由于该瞬时A、B、C的速度均为零,故三者沿绳方向的加速度分量相等,有

                 

 

由牛顿第二定律对A、B、C分别列式,得

对A有:

FA—mAgsin60°=mAaA,且mA=

m.

对B有:

FB=mBgsin30°=mBaB,mB=2m.

对C有:

联解以上四式可得

    aA=

g,aB=

g,

       ac=

g=0.155g.

点评:

连接体的速度关系是:

沿绳或杆方向的速度分量相等,但加速度却不一定相等.只有初速度为零时加速度之间才保持这种关系,在解题时应引起注意.

图4

例3:

图4所示。

为斜面重合的两楔块ABC及ADC,质量均为M,AD、BC两面成水平,E为质量等于m的小滑块,楔块的倾角为a,各面均光滑,系统放在水平平台角上从静止开始释放,求两斜面未分离前E的加速度。

 

解析:

系统由静止释放后,ABC沿水平面向左加速,ADC相对ABC沿AC方向加速,E相对ADC沿AD方向加速,本题求解的关键是找到各物体加速度之间的关系。

设两斜面之间的弹力为N1,方向与AC面垂直,E与ADC间有弹力N2方向与AD面垂直,设ABC楔块、E物的加速度分别为aB、aE,由于受桌面限制,aB必水平向左。

另外由于在水平方向不受力,aE必竖直向下。

再设楔块ADC相对于楔块ABC的加速度为aD,方向必沿AC向下。

由于系统在水平方向不受力作用,故有:

                aB=aDcosα-aB。

E物紧贴ACD面,所以:

                  aE=aDsinα。

对ABC楔块,在水平方向上有:

                N1sinα=MaB。

对E物根据牛顿第二定律有:

                 mg-N2=maE。

对ADC楔块在竖直方向上有:

           N2+Mg-N1cosα=MaDsinα。

解这几个联立方程得:

              aE=

g。

图5

例4:

定滑轮一方挂有m1=5kg的物体,另一方挂有轻滑轮B,滑轮B两方挂着m2=3kg与m3=2kg的物体(图5),求每个物体的加速度。

解析:

取地面为参考系。

隔离物体,进行受力分析(图6)。

物体m1所受的力计有:

重力m1g竖直向下,绳中张力T1指向上。

物体m2受的力为重力m2g与绳中张力也不同,分别以T1与T2表示。

物体m3所受的力为重力m3g和绳中张力T3,m2和m3是系在同一根轻绳的两端,又略去绳重及滑轮与绳之间的摩擦,设它们是光滑的,所以m2与m3所受的绳中张力相同,T2=T3,均设为T2。

因三个物体均在竖直方向运动,所以只选一个坐标即可,选x轴向下为正。

现假定m1向下运动,m2相对滑轮B也向下运动。

在这假定下设m1的加速度为a1,滑轮B也以a1向上运动。

m2相对地面的加速度为a2,m3的为a3,即有

以上三个方程中有五个未知量,所以我们必须另外再列出两个方程。

 

图6

 

图7

隔离滑轮B,因为是轻滑轮,所以它的质量可以略去不计,即有(图7)

                      2T2-T1=0                        (4)

图8

又物体m2和m3均是随着滑轮B向上以加速度a1上升,又相对滑轮B以加速度a′运动。

所以m2和m3相对地面的加速度应为这二者的代数和(图8),即     

                      a2=a′=a1                       (5)

                    a3=-(a1+a′)                      (6)

以(4)、(5)及(6)式代入

(1)、

(2)、(3)中可行

                    m1g-T1=m1a1                       (7)

               m2g-T1/2=m2(a′-a1)                     (8)

               m3g-t1/2=m3(-a′-a1)                     (9)

现在三个方程中有三个待求量T1、a1、a′,可以完全解出它们的值。

为简便起见将m1=5kg,m2=3kg,m3=2kg的值代入(7)、(8)、(9)中得

                   5g-T1=5a1                          (10)

                3g-T1/2=3(a′-a1)                     (11)

               2g-T1/2=2(-a1-a′)                     (12)

解出

                          a1=

                          a′=

g

                T1=5×

g=

g=4

g

再回到我们要求的a2及a3,由(5)式与(6)式可得

上式中的负号表示a3的方向与我们的假定相反,它相对地面以

g的大小向上加速运动。

图9

例5:

如图9所示,两个木块A和B间的接触面垂直于图中纸面且与小平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦因数和动摩擦因数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B之间不发生相对滑动,则:

(1)μ的数值应满足什么条件?

(2)推力F的最大值不能超过多少?

(只考虑平动,不考虑转动问题)

解析:

弄清A、B共同向右加速,且相互之间又不发生相对滑动的力学条件是求解本题的基本出发点.

(1)令N表示A、B之间的相互作用力(垂直于接触面如图10所示),若A相对于B发生滑动,则A在竖直方向必有加速度,现要使A相对于B不滑动,则A受的力N在竖直方向的分力必须小于或等于A的重力.所以要使B向右加速运动而同时A相对于B不滑动,必须同时满足下列两式

           Nsinθ-μ(mBg+Ncosθ)=mBa>0,                        ①

                    Ncosθ≤mAg.                                ②

图10

由①②两式可解得

               μ<

tanθ.                                 ③

(2)在已满足③式时,又由于A的水平方向的加速度和B相同,即

          

=

.   ④

由②④两式可解得

             F≤

(mA+mB)g(tanθ-μ).                          ⑤

图11

例6:

如图11所示,C为一放在固定的粗糙水平桌面上的双斜面,其质量mc=6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆可不计.A和B是两个滑块,质量分别为mA=3.0kg,mB=0.50kg,由跨过定滑轮的不可伸长的轻绳相连.开始时,设法抓住A、B和C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直.今用一大小等于26.5N的水平推力F作用于C,并同时释放A、B和C.沿桌面向左滑行,其加速度a=3.0m/s2,B相对于桌面无水平方向的位移(绳子一直是绷紧的).试求C与桌面间的动摩擦因数μ.(图中α=37°,β=53°,已知sin37°=0.6,重力加速度g=10m/s2)

解析:

1.本题若分别取A、B、C为研究对象,则将大大增加未知量的个数,从而使求解陷入繁杂的运算中.下面的解法提供了一个各物体虽无共同加速度,但仍可用整体法求解的很好的例子.

2.通过C的加速度和B在水平方向上没有位移寻找到A、B的绝对加速度和相对加速度是求解的能力前提.

设aA、aB与aA′aB′分别为A、B相对于桌面的加速度的大小和相对于C的加速度的大小,设水平向右为x轴的正方向,竖直向上为y轴的正方向.因为B开始时相对于桌面静止,以后相对于桌面无水平方向的位移,可知aB沿水平方向的分量为0,即

                  aBx=aBx′-a=0

由此得

                  aBx′=a=3m/s2.

因为绳不可伸长,又是绷紧的,故有

       aA′=aB′.

图12

它们的方向分别沿所在的斜面,方向如图12所示.各分量的大小为

    aBx′=aB′cos53°,

    aBy′=aB′sin53°,

    aAx′=aA′cos37°,

    aAy′=-aA′sin37°.

由此得    

aB′=aA′=5m/s2,aBy′=4m/s2,

aAx′=4m/s2,aAy′=-3m/s2.

相对于地面各加速度的分量的大小为

                     aAx=aAx′-a=1m/s2,

                     aAy=aAy′=-3m/s2,

                       aBy=aBy′=4m/s2.

对于由A、B和C组成的系统,在水平方向受到的外力是桌面对C的摩擦力-f,方向向右;推力F,方向向左.根据动量定理

          (f-F)△t=mA△vAx+mB△vBx-mC△v,

或              f-F=mA

+mB

-mC

.

即           f-F=mAaAx+mBaBx-mCa.

将有关数值代入得

                   f=10N.

系统在竖直方向上受到的外力是:

桌面作用于C的弹力N,方向竖直向上,各物体的重力,方向竖直向下.因此有

    [N-(mA+mB+mC)g]△t=mC△vCy+mA△vAy+mB△vBy.

代入有关数值,得

                         N=93N.

故动摩擦因数

                    μ=

=

≈0.11.

4非惯性参照系

三、牛顿运动定律的适用范围和适用条件

对于宏观低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理.

牛顿运动定律的适用条件:

(1)质点,

(2)惯性系.

题型讲解

图1

例1:

在火车车厢内有一长l,倾角为θ的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩擦因数为μ.求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多少时,物体可静止于A点?

                                          

解析:

此题若以地面为参照系计算比较复杂,现以车厢为参照系,在非惯性系中解题,则物体受到的惯性力f惯=-ma0,取如图所示的坐标系,设物体相对于斜面的加速度为a′,根据牛顿第二定律

         mgsinθ-μN-ma0cosθ=ma′

         N-mgcosθ-ma0sinθ=0

由以上两式解得

a′=(g-μa0)sinθ-(a0+μg)cosθ

由运动学公式v2=2a′l可得物体相对车厢的速度

v=

方向沿着斜面向下.

讨论:

物体静止于A点的条件,先假设物体有下滑趋势,则摩擦力方向向上,由a′≤0,有tanθ≤

.再假设物体有上滑趋势,则摩擦力方向向下,有

         ma0cosθ-mgsinθ-μ(mgcosθ+ma0sinθ)≤0

         tanθ≥

因此,当a0与μ一定时,要命名物体静止于斜面,θ应满足的关系式

≤tanθ≤

图2

例2:

如图2所示,在一根没有重力的长度l的棒的中点与端点上分别固定了两个质量分别为m和M的小球,棒沿竖直轴用铰链连接,棒以角速度ω匀速转动,试求棒与竖直轴线间的夹角θ。

                                                

解析:

如果以杆为参照系——以ω角速度转动的参照系,引入惯性离心力后,本题即可化简为静力学问题了。

不过这里可看成两个物体分别在所在处受到惯性力的作用。

以杆为参照系,引入惯性离心力后,杆子受力相当于图3所示(轴处作用力未画出),其中:

图3

                            F1=

lsinθ,

                            F2=Mω2lsinθ。

以O为轴,根据固定转动轴物体平衡条件有:

mg·

sinθ+Mglsinθ=F1·

cosθ+F2lcosθ。

解得:

         θ=arccos

 

二、问答题:

7、我们每个人应该怎样保护身边的环境?

图4

例3:

长分别为l1和l2的不可伸长的轻绳悬挂质量都是m的两个小球,如图4所示,它们处于平衡状态。

突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞),瞬间内获得水平向右的速度v0,求这瞬间连接m2的绳的拉力为多少?

18、北斗七星构成勺形,属于大熊座,北极星属于小熊座。

解析:

冲击使m1具有速度v0,由于它受上端固定在O点的绳l1的牵制,因而作圆周运动,此刻的加速度竖直向上,指向O点,大小为a1=v02/l1。

下面的小球m2此刻相对于地面速度为零,但相对于m1以向左的大小为v0速度运动,它相对于m1也作圆周运动,相对于m1来说,它的加速度a21亦竖直向上,大小为a21=v02/l2。

    对m2,根据牛顿第二定律有:

                 T2-m2g=m2a2。

二、问答题:

其中m2相对于地(惯性系的加速度),

a2=a21+a1=

一、填空:

这样得:

               T2=m2(g+

+

)。

 

5、铁生锈变成了铁锈,这是一种化学变化。

水分和氧气是使铁生锈的原因。

图5

例4:

一个质量为m的小物体,放在半径为R的半球顶上,设半球面光滑,初始时它们之间相对静止.求在下列情况中物体m离开球面时,它距半球底面的距离,如图所示.

(1)半球以10m/s的速度匀速上升;

第三单元宇宙

(2)半球以a=g/4的加速度匀加速向右运动.

解析:

物体脱离球面的临界条件是支持力为零,取半球为参照系,则

(1)属惯性系;

(2)属非惯性系,需加惯性力.

9、在17世纪,人们发现把两个凸透镜组合起来明显提高了放大能力,这就是早期的显微镜。

(1)取半球为参照系,属惯性系.脱离时,物体与球的相互作用力为零,有

     mgcosα=m

.

16、在北部天空的小熊座上有著名的北极星,可以借助大熊座比较容易地找到北极星。

黑夜可以用北极星辨认方向。

由支能定理得                                                   

7、对于生活中的一些废弃物,我们可以从垃圾中回收它们并重新加工利用。

这样做不但能够减少垃圾的数量,而且能够节省大量的自然资源。

         mg(R-h)=

mv2,

且cosα=

,联解方程可得

         h=

R.

图6

(2)当半球面匀加速向右运动时,取半球为参照系.此参照系为一非惯性参照系,小球除受重力外还受一惯性力F=ma的作用,方向如图所示.根据动能定理,有

mgcosθ-F惯sinθ=m

        mg(R-h)+F惯Rsinθ=

mv2,

          cosθ=

,sinθ=

.

联立求解以上四个方程可得

               h1=0.81R,h2=0.44R.

由物理不定期程可知,当m位于h=0.44R时,物体早已脱离半球面,故此答案应舍去.所以h=0.81R,

点评:

读者还可思考,若物体在竖直方向以加速度a运动时,物体离开球面的高度仍为

R,其原因何在?

 

图7

例5:

长为2b的轻绳,两端正各系一个质量为m的小球,中央系一个质量为M的小球,三球均静止于光滑的水平桌面上,绳处于拉直状态,三球在一直线上(图7).今给小球M以一个冲击,使它获得水平速度v,v的方向与绳垂直.求

(1)M刚受冲击时绳上的张力;

(2)在两端的小球发生碰撞前的瞬间绳中的张力.

解析:

(1)M刚受冲击时,m在M参照系中做圆周运动,而M此瞬间的加速度为零所以对m不需加惯性力,因此此时绳上的张力 

                       T1=m

(2)由于桌面是水平光滑的,所以由三个球组成的系统动量和能量都守恒.设两个m球在碰前的瞬间M和m相对桌面的加速度分别为aM和am,其中aM与原来的v反向;am与原来的v同向,绳的张力为T2,那么

                     2T2=MaM,  aM=

图8

相对于M,m做圆周运动,在碰撞前的瞬间,m相对M的向心加速度为v

/b,其中vx为m在垂直于绳方向上的速度(图8).因为M是一个非惯性系,所以在分析m时要加惯性力maM,方向与aM相反,

T2+maM=m

将aM=

代入:

T2+m

=m

可解得T2=

·m

因为绳子不可伸长,所以可以设M和m在沿绳子方向上的速度都是vy由机械能守恒定律和动量守恒定律可有

          

Mv2=

Mv

+2·

m(v

+v)

          Mv=(M+2m)vx

由以上二式可解得v=Mv2/(M+2m)

将v代入T2的表达式,即得

T2=

 

图9

例6:

一光滑细杆绕竖直轴以匀角速度ω转动,细棒与竖直轴夹角θ保持不变(图9).一个相对细棒静止的小环自离地面高h处沿细棒下滑,求小环滑到细棒下端时的速度.

解析:

由于小环所需的向心力在不断减小,因此小环不是做匀变速运动,在中学阶段无法用牛顿运动定律来解.用动能定理来解时.计算细棒对小环做的功又比较困.为了避开细棒对小环做功这个难点,我们选择细棒作参照系,但在这个非惯性系中,分析小环的受力时必须加上一个惯性离心力.小环在旋转参考系中虽然有径向运动,受到科里奥利力的作用,但小环在切向方向上无位移,所以科里奥利力不做功.

惯性离心力f=mω2r,随半径r的减小而均匀地减小,方向沿半径向外,所以小环由半径为r0处移到细棒下端r=0处,惯性离心力做功

             W1=-mω2r=-mω2h2tan2θ

重力做功                   W2=mgh

由动能定理可有

         mgh+(-mω2h2tan2θ)=mv2

                  v=

因为细棒底端相对地面静止,所以v就是小环相对地的速度.

这里需要注意的是:

当θ一定时,若ω<,小环可以下滑;若ω=,小环相对细棒静止;如果ω>,小环将沿细棒上升.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 冶金矿山地质

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1