有理数的乘法教案北师大版.docx
《有理数的乘法教案北师大版.docx》由会员分享,可在线阅读,更多相关《有理数的乘法教案北师大版.docx(12页珍藏版)》请在冰豆网上搜索。
有理数的乘法教案北师大版
有理数的乘法教案北师大版
(经典版)
编制人:
__________________
审核人:
__________________
审批人:
__________________
编制学校:
__________________
编制时间:
____年____月____日
序言
下载提示:
该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关注!
Downloadtips:
Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!
Inaddition,thisshopprovidesyouwithvarioustypesofclassicsampleessays,suchaspreschoollessonplans,elementaryschoollessonplans,middleschoollessonplans,teachingactivities,comments,messages,speechdrafts,workplans,worksummary,experience,andothersampleessays,etc.IwanttoknowPleasepayattentiontothedifferentformatandwritingstylesofsampleessays!
有理数的乘法教案北师大版
这是有理数的乘法教案北师大版,是优秀的数学教案文章,供老师家长们参考学习。
有理数的乘法教案北师大版第1篇
一、学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。
由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:
运用有理数乘法法则正确进行计算。
难点:
有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:
由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:
26米。
教师:
能写出算式吗?
学生:
……
教师:
这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2X3
2看作向东运动2米,X3看作向原方向运动3次。
结果:
向
运动
米
2X3=
b.-2X3
-2看作向西运动2米,X3看作向原方向运动3次。
结果:
向
运动
米
-2X3=
c.2X(-3)
2看作向东运动2米,X(-3)看作向反方向运动3次。
结果:
向
运动
米
2X(-3)=
d.(-2)X(-3)
-2看作向西运动2米,X(-3)看作向反方向运动3次。
结果:
向
运动
米
(-2)X(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:
在上述4个式子中,我们只看符号,有什么规律?
(+)X(+)=同号得
(-)X(+)=异号得
(+)X(-)=异号得
(-)X(-)=同号得
b.积的绝对值等于
。
c.任何数与零相乘,积仍为
。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为
。
(3)学生做P76练习1
(1)(3),教师评析。
(4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
多个因数相乘,积的符号由
决定,当负因数个数有
,积为
;当负因数个数有
,积为
;只要有一个因数为零,积就为
。
有理数的乘法教案北师大版第2篇
目标预测
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
★教学重难点
一、重点:
熟练进行有理数的乘除运算
二、难点:
正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
★教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘_________________
(2)异号两数相乘___________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:
ab=_________
(2)乘法结合律:
(ab)c=_______
(3)乘法分配律:
(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:
学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.
(1)若ab=1,则a、b的关系为()
(2)下列说法中正确的个数为()
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身
A1个B2个C3个D4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变()
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
例3.计算
(1)
(2)(3)(4)
例4、计算
(1)
(2)(3)
引导学生观察算式特点,尽可能进行简便运算
五、布置作业,当堂反馈
1.当堂反馈
2.作业课本P48,P4916、17、18
有理数的乘法教案北师大版第3篇
一、学情分析:
《有理数的乘法》数学教案
1、学生的知识技能基础:
学生在小学已经学习过非负有理数的四则运算以及运算律。
在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动经验基础:
在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:
发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的`运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:
第一环节:
问题情境,引入新课;第二环节:
探索猜想,发现结论;第三环节:
验证明确结论;第四环节:
运用巩固,练习提高;第五环节:
课堂小结;第六环节:
布置作业。
第一环节:
问题情境,引入新课
问题:
(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:
培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3X4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)X4=-12(厘米)从而引出课题:
有理数的乘法。
第二环节:
探索猜想,发现结论
问题:
(1)由课题引入中知道:
4个-3相加等于-12,可以写成算式
(-3X4)=-12,那么下列一组算式的结果应该如何计算?
请同学们思考:
(-3)X3=_____;
(-3)X2=_____;
(-3)X1=_____;
(-3)X0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)X(-1)=_____;
(-3)X(-2)=_____;
(-3)X(-3)=_____;
(-3)X(-4)=_____。
教前设计意图:
以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
教后反思事项:
(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。
但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:
验证明确结论
问题:
针对上一环节探究发现的有理数乘法法则:
两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。
进行验证活动,出示一组算式由学生完成。
4X(-4)=_____;
4X(-3)=_____;
4X(-2)=_____;
4X(-1)=_____;
(—4)X0=_____;
(—4)X1=_____;
(—4)X2=_____;
(—4)X(-1)=_____;
(—4)X(-2)=_____。
教前设计意图:
这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。
同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:
(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。
所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。
另外还应注意:
法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:
运用巩固,练习提高
活动内容:
(1)1。
计算:
⑴(-4)X5;⑵(5-)X(-7);
⑶(-3÷8)X(-8÷3);⑷(-3)X(-1÷3);
(2)2。
计算:
⑴(-4)X5X(-0。
25);⑵(-3÷5)X(-5÷6)X(-2);
3。
“议一议”:
几个有理数相乘,因数都不为零时,积的符号怎样确定?
有一个因数为零时,积是多少?
(4)计算:
⑴(-8)X21÷4;⑵4÷5X(-25÷6)X(-7÷10);
⑶2÷3X(-5÷4);⑷(-24÷13)X(-16÷7)X0X4÷3;
⑸5÷4X(-1。
2)X(-1÷9);⑹(-3÷7)X(-1÷2)X(-8÷15)。
教前设计意图:
对有理数乘法法则的巩固和运用,练习和提高.
教后反思事项:
(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)X2X3X4=_____;
(-1)X(-2)X3X4=_____;
(-1)X(-2)X(-3)X4=_____;
(-1)X(-2)X(-3)X(-4)=_____;
(-1)X(-2)X(-3)X(-4)X0=_____。
通过对以上算式的计算和观察,学生不难得出结论:
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:
感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?
”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:
培养学生的口头表达能力,提高学生的参与意识。
激励学生展示自我。
教后反思事项:
学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
有理数的乘法教案北师大版第4篇
一、教材分析
有理数的乘法是继有理数的加减法之后的又一种基本运算。
它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。
对后续知识的学习也是至关重要的。
二、学情分析
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)
1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,
(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点
重点:
有理数的乘法法则。
难点:
有理数乘法的符号法则
五、教学策略
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)
(一)复习导入创设情境
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。
进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知
要求学生自主学习课本内容,完成课文中的填空。
我给与学生充足的时间和空间。
通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:
(正X正、正X0、正X负、负X0、负X负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。
(板书:
法则)(确定有理数乘法运算的两步模型:
先定符号,在求绝对值)
这样设计的目的是
(1)构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。
同时又突出了本节课的教学重点。
(2)通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。
使学生知道”如何观察”“如何发现规律”。
(三)分析法则掌握实质
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)X(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5X3=15,再求值)。
第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。
这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
(四)解决问题综合运用
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:
倒数-乘积是1的两个数互为倒数)。
在有理数范围内仍有意义。
本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
(五)体验成功享受快乐
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。
通过学生参与活动,调动学生学习的积极性。
同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。
这也是数学核心素养的要求。
(六)总结收获畅谈体会
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
让学生充分发表自己的感受,并相互补充。
及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。
这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。
让学生品尝收获的喜悦,坚定今后学习数学的信心。
(七)布置作业巩固深化
七、课后反思
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。
通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。
更好的促进学生全面、持續、和谐的发展。
本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。
谢谢大家!