制冷外文文献.docx

上传人:b****6 文档编号:8822886 上传时间:2023-02-01 格式:DOCX 页数:23 大小:1.91MB
下载 相关 举报
制冷外文文献.docx_第1页
第1页 / 共23页
制冷外文文献.docx_第2页
第2页 / 共23页
制冷外文文献.docx_第3页
第3页 / 共23页
制冷外文文献.docx_第4页
第4页 / 共23页
制冷外文文献.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

制冷外文文献.docx

《制冷外文文献.docx》由会员分享,可在线阅读,更多相关《制冷外文文献.docx(23页珍藏版)》请在冰豆网上搜索。

制冷外文文献.docx

制冷外文文献

Keywords:

Steady-statesimulation、Semi-empiricalmodel、Domesticrefrigerators、Experimentalvalidation

1.Introduction

Ahouseholdrefrigeratoriscomposedofathermallyinsulatedcabinetandavapor-compressionrefrigerationloopasshowninFig.1.Theserefrigerationsystems,onthewhole,consumealargeamountofenergysincehundredsofmillionsarecurrentlyinuse,anddozensofmillionsarecomingontothemarketeveryyear.Anunderstandingoftheoperationalcharacteristicsofarefrigerationsystemisvitalforanyenergyoptimizationstudy,notonlytopredictitsperformance,butalsotoaidthedecisionmakingduringthedesignprocess.

Therefrigeratorperformanceisusuallyassessedbyoneofthefollowingapproaches:

(i)simplifiedcalculationsbasedoncomponentcharacteristics;(ii)componentanalyzesthroughcommercialCFDpackages;and(iii)standardizedexperiments.Althoughthefirsttwotechniquesplayimportantrolesincomponentdesign,theydonotprovideenoughinformationoncomponentmatchingandsystembehavior,whichisonlyobtainedbytestingtherefrigerator

inacontrolledenvironmentchamber.Thesetests,however,aretimeconsumingandexpensive.Afasterandlesscostlyalternativeistheuseofcomputermodelstosimulatethethermal-andfluid-dynamicbehaviorofrefrigerationsystems.

Manymathematicalmodelshavebeenproposedinthepastforrefrigeratormodeling.Inoneoftheearlieststudies,DavisandScott[1]developedamathematicalmodeltopredictthesteady-statecomponentbehavioroverarangeofoperatingconditions,consistingofindividualcomponentsub-modelsthatcombinedfirst-principleswithanumberofempiricalparametersobtainedfromtheliterature.Simplisticmodelswereusedforheatexchangersastheevaporatingandcondensingpressureswereassumedtobeknown.Thecompressormodel,ontheotherhand,consideredthein-cylindercompressionandthepressuredropsinthesuctionanddischargevalves.Nomodelhasbeenprovidedfortheexpansion

device.

Afewyearslater,theUnitedStatesDepartmentofEnergy(USDOE)sponsoredthedevelopmentofasteady-statesimulationmodelforhouseholdrefrigerators,whichwasintendedtobeadoptedasareferencetoestablishtheenergytargetsforAmericanhouseholdmanufacturers[2].BasedontheUSDOEmodel,severalincrementalstudieswerethencarriedout.First,Abramsonetal.

[3]incorporatedasub-modelforthecapillarytube-suctionlineheatexchanger,andthemodelwasadaptedtosimulateatwo-door‘Combi’refrigerator.Later,Reevesetal.[4]improvedtheoverallcomputationalperformanceusingthee-NTUmethodforheatexchangermodeling,andpolynomialfitsforthecompressormassflowrateandpowerconsumption.

Morerecently,Kleinetal.[5]proposedafirst-principlesmodelforsimulatingthesteady-statebehaviorofa230-lall-refrigerator,whichcomprisedthefollowingcomponentsub-models:

anaturaldraftwire-and-tubecondenser,aplate-type‘roll-bond’evaporator,acapillarytube-suctionlineheatexchanger,ahermeticreciprocatingcompressor,andaninsulatedcabinet.Themodelwasestablishedbasedonthemass,momentumandenergyconservationlaws,heattransferequations,equationsofstateoftheworkingmediaandempiricalcorrelationsderivedfromexperimentaldata.Thecapillarytube-suctionlineheatexchangersub-modelwasderivedfromamoresophisticatedmodel[6]throughafractionedfactorialdesigntechnique,whilstthecompressorsub-modelwasbasedoncurvefittingsofcalorimetricdata.

Inallofthestudiesmentionedabove,themodelsdependedonreliablecomponent-levelperformancedata,whichrequiredpurpose-builtexperimentalfacilitiesfortestingeachcomponent.Inthepresentstudy,therequiredempiricalinformationwasgathereddirectlybytestingtherefrigeratorinacontrolledtemperatureandhumiditychamber.Inordertodoso,therefrigerationsystemwasproperlyandcarefullyinstrumentedtominimizeanyaffectonitsperformance.Theconservationlawswereemployedtoestablishthegoverningequationsthatdescribethesystembehavior.Eachcomponentwasmodeledusingalumpedapproach,basedonphysicalprinciplesandemployingempiricalparameters(e.g.,heattransfercoefficientsandfrictionfactors),adjustedtofittheexperimentaldata.Themodelshowedgoodagreementwithexperimentaldataduringthevalidationexercise.

2.Experimentalwork

Thetestswereperformedwitha430-ltop-mountfrost-freerefrigerator,assembledwithahermeticreciprocatingcompressor,anaturaldraftwire-and-tubecondenser,andatube-fin‘no-frost’evaporator.ThesealedsystememployedHFC-134aastheworkingfluid(130g)andsyntheticoilasthelubricant(250ml).Theairtemperaturesinthefreezerandinthefresh-foodcompartmentswerecontrolledbyathermostatandbyathermostaticdamper,respectively.

Therefrigeratorwasinstrumentedandinstalledinsideanenvironmentchamber.T-typethermocoupleprobeswereimmersedintherefrigerantflowpassageandabsolutepressuretransducerswithameasurementuncertaintyof±0.1%ofthefullscalewereinstalledatsevenpointsalongtherefrigerationloop,asshowninFig.1.ACoriolis-typemassflowmeterwithameasurementuncertaintyof±0.03kg/hwasinstalledatthecompressordischarge.Thesurroundingairtemperaturewasmeasuredbyfivethermocouplesplacedaroundtherefrigerator.Thefreezerandthefresh-foodairtemperaturesweremeasured,respectively,bythreeandsixthermocouplesplacedwithinthesecompartments.AllT-typethermocouplesemployedinthisstudyhaveameasurementuncertaintyof±0.3C.Thecompressorandfanpowerconsumptionweremonitoredusingadigitalpoweranalyzerwithameasurementuncertaintyof±0.1%.A112-channelsystemwasemployedfordataacquisition.Testswereperformedbeforeandaftertheinstrumentationsetuptocheckforanydiscrepanciesinthesystemperformance.

Additionaladjustmentswereintroducedintothesystemtoallowtheobtainmentofthedesiredinformation.Aneedlemeteringvalvewasinstalledasanauxiliaryexpansiondeviceupstreamofthecapillarytube.Theoriginalfixedcapacitycompressorwasreplacedbyavariablecapacitycompressor.Thewallheatloopwasby-passedandthedefrostheaterswereturnedoff.Thethermostatic

mechanismofthedamperwasremovedandtheaperturewaskeptconstantlyopened.Thecompressorandfanpowerconsumptionandspeedwerecontrolledandmeasuredindependently.ThecompressorpowerconsumptionandspeedweremeasuredwithaYokogawaWT230poweranalyzer.Thefanspeedwasmeasuredusinginfraredlight.Intotal,13variableswereexperimentallystudied,sevenweregeometriccharacteristicsofthesystemandtheothersixwereoperationalvariables.

Thegeometriccharacteristicswerevariedindifferentcombinationswhichgeneratedeightdifferentsystemconfigurations,asshowninTable1.Eachconfigurationwastestedcontrollingthefollowingsixoperationalvariables:

(i)ambienttemperature;(ii)compressorspeed;(iii)refrigerantcharge;(iv)auxiliaryexpansiondeviceopening;(v)fanspeed;and(vi)internalheating.Atotalof168testswereperformed,approximately20testsforeachconfiguration.Independentexperimentalsetupswereusedtomeasurethecapillarytubeinnerdiameter,theinternalvolumesofthecomponents,andthecabinetoverallthermalconductance.Therangeoftestedconditionsisshowedinthepressure–enthalpydiagramofFig.2.Itisworthofnotethatthisdatasetcanalsobeusedforcomponentanalysis.

Fig.1.Schematicrepresentationofthevapor-compressionloop.

3.Mathematicalmodel

Formodelingpurposes,therefrigerationsystemwasdividedintofivecomponentsub-models:

(i)compressor,(ii)capillarytube-suctionlineheatexchanger,(iii)condenser,(iv)evaporator,and(v)refrigeratedcabinet.Eachofthecomponentsub-modelsaredescribedbelow.Moredetailedinformationcanbefoundin[7].

3.1.Reciprocatingcompressor

Inmostreciprocatingcompressors,theenteringrefrigerantpassessuccessivelythroughthecompressorshell,thesuctionmufflerandthesuctionvalvetothecompressionchamber,whereitisexpelledthroughthedischargevalvetothedischargemuffler.Thecompressormassflowrateequationwasbasedonthevolumetricefficiency,ƞ

asdefinedby[8]

(1)

wherewandNarethecompressormassflowrate(kgs

)andspeed(s

),respectively,V

isthecompressionchambervolume(m

),andv

isthespecificvolumeatthecompressorinlet(m

kg

).

Thecompressordischargeenthalpy,h

wasobtainedfromanoverallenergybalance

(2)

whereƞ

istheoverallcompressionefficiency.ThecompressionpowerW

wascalculatedasfollows:

(3)

Thecompressorheatreleaseratewascalculatedbyanoverallthermalconductance,UA

relatedtothetemperaturedifferencebetweenthedischargeline,t

andthesurroundingair,t

.

Thecompressorvolumetricandoverallefficiencyvaluesandtheoverallcompressorthermalconductancewereallfittedtotheexperimentaldata,yielding

whereUA

isgivenin(WK

),p

andp

in(bar),t

andt

in(

C),andNin(rpm).AscanbeseeninFig.3,thissetofequationspredictstheexperimentaldataformassflowrate(Fig.3a)andpowerconsumption(Fig.3b)within±10%errorbands,andthecompressordischargetemperature(Fig.3c)withdeviationsof±5

C.

Fig.3.Validationofthecompressorsub-model:

(a)massflowrate,(b)power

consumptionand(c)compressordischargetemperature

 

3.2.Heatexchangers:

condenserandevaporator

Thecondenserisanaturaldraftwire-and-tubeheatexchanger,inwhichtheair-sidetemperatureisassumedtobeuniform.Thecondenserwasdiv

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1