最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc

上传人:wj 文档编号:87340 上传时间:2022-10-02 格式:DOC 页数:22 大小:855.50KB
下载 相关 举报
最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc_第1页
第1页 / 共22页
最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc_第2页
第2页 / 共22页
最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc_第3页
第3页 / 共22页
最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc_第4页
第4页 / 共22页
最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc

《最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc》由会员分享,可在线阅读,更多相关《最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc(22页珍藏版)》请在冰豆网上搜索。

最新2×300MW石灰石石膏湿法脱硫工艺参数设计.doc

2×300MW石灰石石膏湿法脱硫工艺参数设计

精品好文档,推荐学习交流

目录

1、前言 2

2、设计原则 2

3、设计步骤 5

4、设计计算书 5

4.1理论空气量的计算 5

4.1.1碳与氧的作用 5

4.1.2氢与氧的作用 6

4.1.3硫与氧的作用 6

4.2空气过剩系数 7

4.3水蒸气量的计算 7

4.4烟气体积计算 8

4.4.1理论烟气体积 8

4.4.2、实际烟气体积 8

4.4.3、烟气体积和密度的校正 8

4.4.4过剩空气较正 8

5、物料平衡核算 9

5.1吸收塔的物料平衡 9

5.2石膏处理系统的物料平衡 10

5.3烟气系统及石灰石湿磨系统的物料平衡 11

5.4水平衡 11

5.5热量平衡的计算 12

6、设计计算书 16

7、总结 23

8、参考文献 24

2×300MW石灰石/石膏湿法脱硫工艺参数设计

1、前言

我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。

火电厂以煤作为主要燃料进行发电,煤直接燃烧开释出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加,加大火电厂SO2的控制力度就显得非常紧迫和必要。

SO2的控制途径有三个:

燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前烟气脱硫被以为是控制SO2最行之有效的途径。

目前国内外的烟气脱硫方法种类繁多,主要分为干法(或半干法)和湿法两大类。

湿法脱硫工艺绝大多数采用碱性浆液或溶液作为吸收剂,技术比较成熟,是目前使用最广泛的脱硫技术,根据吸收剂种类的不同又可分为石灰石/石膏法(钙法)、氨法、海水法等。

其中钙法因其成熟的工艺技术,在世界脱硫市场上占有的份额超过80%。

截至2011年底,我国脱硫装机超过6亿千瓦,其中85%以上为湿法烟气脱硫,多存系统稳定性差,脱硫效率波动较大等问题。

火电厂大气污染物排放标准GB13223-2011将执行200mg/m3的SO2排放浓度限值,且新建脱硫装置将不允许设置旁路,对脱硫装置性能与可靠性要求极高。

2、设计原则

2×300MW石灰石/石膏湿法脱硫工艺参数设计(含GGH)

1、已知参数:

(1)设计煤质(详细数据见指导书)。

(2)哈尔滨锅炉有限公司HG-1060/17.5-HM35型号锅炉(详细数据见

导书)。

(3)环境温度20℃,空气中的水质量含量1%。

(4)石灰石品质:

CaCO3含量98.2%,SiO2含量1.1%,CaO含量54.5%,MgO含量0.65%,S含量0.025%。

(5)电除尘器除尘效率99.7%。

(6)除尘器漏风系数3%。

(7)增压风机漏风系数1%。

(8)GGH漏风系数1%。

2、设计条件:

(1)除尘器出口烟气温度138℃。

(2)脱硫效率95%。

(3)氧化倍率2。

(4)Ca/S摩尔比1.03。

(5)烟气流速3.5m/s。

(6)雾化区停留时间2.5s。

(7)液气比14L/m3。

(8)停留时间5s。

(9)GGH净烟气侧出口温度80℃。

3、设计内容:

(1)燃料灰渣计算。

(2)FGD系统烟气量计算。

(3)石灰石与石膏耗量计算。

(4)除尘器出口飞灰计算。

(5)设计计算(氧化风量、蒸发水量、脱硫反应热、吸收塔内放热、水蒸发吸收、水平衡、石灰石用量、石膏产量、吸收塔尺寸、氧化槽尺寸核算等)。

(6)对本设计的评述或有关问题的分析讨论。

(7)吸收塔工艺流程图,并在图上标注系统主要烟气流量与SO2浓度参数。

(8)绘制吸收塔塔体结构尺寸图。

本课程设计采用的工艺为石灰石-石膏湿法全烟气脱硫工艺,吸收塔采用单回路喷淋塔工艺,含有氧化空气管道的浆池布置在吸收塔底部,氧化空气空压机(1用1备)安装独立风机房内,用以向吸收塔浆池提供足够的氧气和/或空气,以便亚硫酸钙进一步氧化成硫酸钙,形成石膏。

塔内上部烟气区设置四层喷淋。

4台吸收塔离心式循环浆泵(3运1备)每个泵对应于各自的一层喷淋层。

塔内喷淋层采用FRP管,浆液循环管道采用法兰联结的碳钢衬胶管。

喷嘴采用耐磨性能极佳的进口产品。

吸收塔循环泵将净化浆液输送到喷嘴,通过喷嘴将浆液细密地喷淋到烟气区。

从锅炉来的100%原烟气中所含的SO2通过石灰石浆液的吸收在吸收塔内进行脱硫反应,生成的亚硫酸钙悬浮颗粒通过强制氧化在吸收塔浆池中生成石膏颗粒。

其他同样有害的物质如飞灰、SO3、HCI和HF大部分含量也得到去除。

吸收塔内置两级除雾器,烟气在含液滴量低于100mg/Nm3(干态)。

除雾器的冲洗由程序控制,冲洗方式为脉冲式。

石膏浆液通过石膏排出泵(1用1备)从吸收塔浆液池抽出,输送至至石膏浆液缓冲箱,经过石膏旋流站一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行过滤脱水。

溢流含3~5%的细小固体微粒在重力作用下流入滤液箱,最终返回到吸收塔。

旋流器的溢流被输送到废水旋流站进一步分离处理。

石膏被脱水后含水量降到10%以下。

在第二级脱水系统中还对石膏滤饼进行冲洗以去除氯化物,保证成品石膏中氯化物含量低于100ppm,以保证生成石膏板或用作生产水泥填加料(掺合物)优质原料(石膏处理系统共用)。

图1石灰石/石膏湿法烟气脱硫工艺流程图

3、设计步骤

1、确认烟气参数、煤质资料、吸收剂成份、脱硫效率;

2、系统流程的确定;

3、物料平衡计算(烟气量核算、工艺水核算、热量核算、物料核算);

4、各子系统流程的确定(烟气系统、SO2吸收系统、吸收剂制备系统、石膏处置系统、工艺水系统、浆液排空系统、废水排放和处理系统、电气系统、控制系统);

烟气系统:

是否全烟气脱硫?

选择轴流式还是离心式风机?

GGH是否保留?

烟道、吸收塔等设备采用何种防腐方式?

SO2吸收系统:

多炉一塔还是一炉一塔?

几层喷淋层?

什么类型的除雾器?

氧化风机布置几台?

吸收剂制备系统:

直接购置石灰石粉末、购置一定块度的石灰石磨制?

湿式制浆还是干式制浆?

石膏处理系统:

石膏抛弃还是回收利用?

4、设计计算书

4.1理论空气量的计算

假定1kg煤完全燃烧,空气中的氧和煤中能参加燃烧的氧(固有氧)全部被耗尽,此时所需要的空气量称理论空气量。

计算时相关假定如下:

1)空气仅由N2和O2组成,气体积比为79/21=3.76;

2)燃料中的固态氧可用于燃烧;

3)燃料中的硫被氧化成SO2;

4)计算理论空气量时忽略NOX的生成量

4.1.1碳与氧的作用

C+O2=CO2

(1)

12kg22.4m322.4m3

(在标准状态下,下同)

此式表明,12kgC完全燃烧时,需消耗22.4m3O2,并生成22.4m3CO2,所以1kg碳完全燃烧消耗的O2为22.4/12=1.8667(m3)。

4.1.2氢与氧的作用

2H2+O2=2H2O

(2)

4.032kg22.4m344.8m3

由式

(2)可知,1kgH2燃烧后要消耗O222.4/4.032=5.5556(m3)。

4.1.3硫与氧的作用

S+O2=SO2 (3)

32kg22.4m322.4m3

由式(3)可知,1kgS燃烧时,需消耗O222.4/32=0.7(m3)。

在1kg煤中含有的碳、的氢、的硫,所以1kg煤燃烧时,碳、氢、硫3种元素的需氧量为:

但这些氧并非完全来源于空气,因为1kg煤中还含有的氧,这部分氧可与碳、氢、硫化合,因此,在计算空气需要量时,应将这部分氧量扣除。

氧的分子量为32,故kg的氧在标准状态下的体积为。

这样1kg煤燃烧所需的O2为

由于空气中O2的容积含量为21%,所以,1kg煤燃烧所需的理论空气量为:

这是理想状态下燃烧所需的空气量,在实际燃烧过程中所需的空气量αVOi>VOi。

4.2空气过剩系数

实际空气量与理论空气量之比为空气过剩系数

通常

4.3水蒸气量的计算

在标准状态下,空气的密度,空气中水蒸气的含量d=10g/kg空气,水蒸气的密度。

1kg煤在理论空气量下燃烧所生成的烟气体积称理论烟气体积,它包括CO2、SO2、N2和水蒸气等,在理论烟气体积中水蒸气有以下3个来源。

A、煤中氢元素的氧化由式

(2)可知,1kgH2完全燃烧后生成44.8/4.032≈11.11(m3)的水蒸气,所以1kg煤中的氢燃烧后生成的水蒸气的体积为:

(4)

B、燃煤中的水分,其体积为:

(5)

C、随空气带入的水蒸气其体积为:

(6)

但在实际燃烧过程中,,因此随空气带进去的水蒸气应为:

式(4)、式(5)、式(6)相加即得到烟气中水蒸气的体积:

4.4烟气体积计算

4.4.1理论烟气体积

在理论空气量下,燃料完全燃烧所生成的烟气体积称为理论烟气体积以表示,烟气成分主要是CO2、SO2、N2和水蒸汽。

干烟气:

除水蒸汽以外的成分称为干烟气;

湿烟气:

包括水蒸汽在内的烟气。

4.4.2、实际烟气体积

4.4.3、烟气体积和密度的校正

燃烧产生的烟气其T、P总高于标态(273K、1atm)故需换算成标态。

大多数烟气可视为理气,故可应用理气方程。

设观测状态下:

(Ts、Ps下)烟气的体积为Vs,密度为ρs。

标态下:

(TN、PN下)烟气的体积为VN,密度为ρN。

标态下体积为:

标态下密度为:

美国、日本和国际全球监测系统网的标准态是298K、1atm,在作数据比较时应注意。

4.4.4过剩空气较正

因为实际燃烧过程是有过剩空气的,所以燃烧过程中的实际烟气体积应为理论烟气体积与过剩空气量之和。

用奥氏烟气分析仪测定烟气中的CO2、O2和CO的含量,可以确定燃烧设备在运行中烟气成分和空气过剩系数。

空气过剩系数为

m---------过剩空气中O2的过剩系数

设燃烧是完全燃烧,过剩空气中的氧只以O2形式存在,燃烧产物用下标P表示,

假设空气只有O2、N2分别为21%、79%,则空气中总氧量为

理论需氧量:

0.264N2P—O2P

所以

若燃烧完全

若燃烧不完全产生CO须校正,即从测得的过剩氧中减CO氧化为CO2所需的O2

各组分的量均为奥氏分析仪所测得的百分数。

5、物料平衡核算

5.1吸收塔的物料平衡

进入脱硫系统的主要组分为N2、CO2、O2、水蒸气、少量的组分为SO2、NOx、HF、HCl、SO3、H2SO4蒸气以及微量的汞蒸气等。

在FGD系统中,大部分SO2和少量O2被吸收。

对于石灰石脱硫系统,每脱除1molSO2大约增加1molCO2。

FGD系统对粉尘的吸收率为60%~80%,虽然这些粉尘对于FGD副产品的纯度影响不大,但其中的一些微量元素足以影响FGD工艺流程的化学特性(例如Al3+、Mn2+、Fe3+、Fe2+、Hg2+等)。

Al3+与F-形成的结合物会抑制CaCO3的溶解,Mn2+及Fe3+是亚硫酸盐的氧化催化剂,将加速它们的氧化过程;Hg2+废水排放需进行处理,否则废水无法达标排放。

烟气进入脱硫塔,塔内水分蒸发,烟气降温并吸收水蒸气达到饱和状态。

塔内水分的蒸发量与燃煤成分、入口烟气温度、入口烟气含湿量有关。

降温后。

的烟气与石灰石—石膏浆液逆流接触后排出吸收塔,石灰石—石膏浆液在塔底进一步氧化后,排出吸收塔,进入石膏处理装置。

吸收塔系统的进料有5部分,石灰石浆液、烟气、石膏处理系统的滤坑水、设备冲洗水

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1