种振二级减速器机械课程设计含总结.docx

上传人:b****7 文档编号:8717712 上传时间:2023-02-01 格式:DOCX 页数:12 大小:20.64KB
下载 相关 举报
种振二级减速器机械课程设计含总结.docx_第1页
第1页 / 共12页
种振二级减速器机械课程设计含总结.docx_第2页
第2页 / 共12页
种振二级减速器机械课程设计含总结.docx_第3页
第3页 / 共12页
种振二级减速器机械课程设计含总结.docx_第4页
第4页 / 共12页
种振二级减速器机械课程设计含总结.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

种振二级减速器机械课程设计含总结.docx

《种振二级减速器机械课程设计含总结.docx》由会员分享,可在线阅读,更多相关《种振二级减速器机械课程设计含总结.docx(12页珍藏版)》请在冰豆网上搜索。

种振二级减速器机械课程设计含总结.docx

种振二级减速器机械课程设计含总结

种振二级减速器(机械课程设计)(含总结)

学号:

指导教师:

成绩:

日期:

xx年6月

1、设计目的……………………………………………………………

22、设计方案……………………………………………………………

33、电机选择……………………………………………………………

54、装置运动动力参数计算……………………………………………

75、带传动设计…………………………………………………………

96、齿轮设计……………………………………………………………1

87、轴类零件设计………………………………………………………2

88、轴承的寿命计算……………………………………………………3

19、键连接的校核………………………………………………………32

10、润滑及密封类型选择……………………………………………33

11、减速器附件设计…………………………………………………33

12、心得体会…………………………………………………………34

13、参考文献…………………………………………………………35

1、设计目的机械设计课程是培养学生具有机械设计能力的技术基础课。

课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是:

(1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。

(2)学习机械设计的一般方法,掌握机械设计的一般规律。

(3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。

(4)学习进行机械设计基础技能的训练,例如:

计算,绘图,查阅设计资料和手册,运用标准和规范等。

2、设计方案及要求据所给题目:

设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1电动机3减速器588)3)材料的选择。

由[2]表10-1选择小齿轮材料为45钢(调质)硬度为240HBS,大齿轮的材料为45钢(正火)硬度为200HBS,两者硬度差为40HBS;4)选小齿轮齿数为Z=24,大齿轮齿数Z,可由Z=得Z=1

12、8,取113;

2、按齿面接触疲劳强度设计按公式:

(1)确定公式中各数值1)试选K=

1、3。

2)由[2]表10-7选取齿宽系数=1。

3)计算小齿轮传递的转矩,由前面计算可知:

T=

1、0N。

4)由[2]表10-6查的材料的弹性影响系数Z=1

89、8MP5)由[2]图10-21d按齿面硬度查的小齿轮的接触疲劳强度极限=580MP;大齿轮的接触疲劳强度极限=560MP。

6)由[2]图10-19取接触疲劳寿命系数K=0、95;K=

1、05。

7)计算接触疲劳许用应力。

取失效概率为1,安全系数S=1,有

[]==0、95580=551MP

[]==

1、05560=588MP

(2)

计算确定小齿轮分度圆直径d,代入

[]中较小的值1)计算小齿轮的分度圆直径d,由计算公式可得:

=

61、6mm2)计算圆周速度。

v==

1、43m/s3)计算齿宽bb==1

61、6=

61、6mm4)计算模数与齿高模数齿高5)

计算齿宽与齿高之比6)计算载荷系数K。

已知使用系数K=1,据v=

1、43,8级精度。

由[2]图10-8得K=

1、07,K=

1、46。

由[2]图10-13查得K=

1、40,由[2]图10-3查得K=K=1故载荷系数:

K=KKKK=1=

1、567)按实际的载荷系数校正所算得的分度圆直径:

8)计算模数mm=

3、按齿根弯曲疲劳强度设计按公式:

(1)确定计算参数1)计算载荷系数。

K=KKKK=1=

2、352)查取齿形系数由[2]表10-5查得Y=

2、65,Y=

2、173)查取应力校正系数由[2]表10-5查得Y=

1、58,Y=

1、804)由[2]图10-20c查得小齿轮的弯曲疲劳强度极=330MP,大齿轮的弯曲疲劳强度极限=310MP5)由[2]图10-18取弯曲疲劳寿命系数K=0、90,K=0、956)计算弯曲疲劳许用应力取弯曲疲劳安全系数S=

1、4,则有:

[]=212Mp

[]=210MP7)计算大、小齿轮的,并加以比较=0、01975==0、0186经比较大齿轮的数值大。

(2)设计计算m=

3、5对比计算结果,由齿面接触疲劳强度计算的模数m与由齿根弯曲疲劳强度计算的法面模数相差不大,取m=

3、5mm,已可满足弯曲疲劳强度。

于是有:

==

20、25取Z=20,则Z

4、7=94取=94,新的传动比i

4、

74、几何尺寸计算

(1)计算分度圆直径mm

(2)计算中心距a=1

99、5mm(3)计算齿轮宽度b=B=

61、6mm,B=70mm

5、大小齿轮各参数见下表高速级齿轮相关参数(单位mm)表6-1名称符号计算公式及说明模数m

3、5压力角齿顶高

3、5齿根高=(+)m=

5、25全齿高=(+)m=

7、868分度圆直径=mZ=70329齿顶圆直径=m=105=()m=4

65、5齿根圆直径m=

89、264m=4

50、1基圆直径==中心距表6-

16、2低速级齿轮设计

1、选定齿轮类型,精度等级,材料及模数1)按要求的传动方案,选用圆柱直齿轮传动;2)运输机为一般工作机器,速度不高,故用8级精度;(GB10095—88)3)材料的选择。

由[2]表10-1选择小齿轮材料为45(调质)硬度为240HBS,大齿轮的材料为45钢(正火)硬度为200HBS,两者硬度差为40HBS;4)选小齿轮齿数为Z=24,大齿轮齿数Z可由Z=得Z=

50、4,取50;

2、按齿面接触疲劳强度设计按公式:

d

2、32

(1)确定公式中各数值1)试选K=

1、3。

2)由[2]表10-7选取齿宽系数=1。

3)计算小齿轮传递的转矩,由前面计算可知:

=

4、7N。

4)由[2]表10-6查的材料的弹性影响系数Z=1

89、8MP5)由[2]图10-21d按齿面硬度查的小齿轮的接触疲劳强度极限=580MP;大齿轮的接触疲劳强度极限=560MP。

6)由[2]图10-19取接触疲劳寿命系数K=

1、07;K=

1、13。

7)计算接触疲劳许用应力。

取失效概率为1,安全系数S=1,有

[]=

1、07580=6

20、6MP

[]=

1、13560=6

32、8MP

(2)

计算确定小齿轮分度圆直径d,代入

[]中较小的值1)计算小齿轮的分度圆直径d,由计算公式可得:

d

2、32=

97、04mm2)计算圆周速度。

v=0、48m/s3)计算齿宽bb==1

97、04=104、3mm4)计算模数与齿高模数齿高h=

2、25=

2、255)

计算齿宽与齿高之比=

10、76)计算载荷系数K。

已知使用系数K=1,据v=0、48,8级精度。

由[2]图10-8得K=

1、03,K=

1、47。

由[2]图10-13查得K=

1、38,由[2]图10-3查得K=K=1故载荷系数:

K=KKKK=1=

1、517)按实际的载荷系数校正所算得的分度圆直径:

d=d=104、3=101、97mm8)计算模数mm=

4、25mm

3、按齿根弯曲疲劳强度设计按公式:

m

(1)确定计算参数1)计算载荷系数。

K=KKKK=1=

1、422)查取齿形系数由[2]表10-5查得Y=

2、65,Y=

2、2243)查取应力校正系数由[2]表10-5查得Y=

1、58,Y=

1、7664)由[2]图10-20c查得小齿轮的弯曲疲劳强度极=330MP,大齿轮的弯曲疲劳强度极限=310MP5)由[2]图10-18取弯曲疲劳寿命系数K=0、95,K=0、976)计算弯曲疲劳许用应力取弯曲疲劳安全系数S=

1、4,则有:

[]=2

23、9Mp

[]=2

14、8MP7)计算大、小齿轮的,并加以比较0、01870、0182经比较大齿轮的数值大。

(2)设计计算m

3、4mm对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的法面模数,取m=

3、5mm,已可满足弯曲疲劳强度。

于是有:

Z=

29、1取Z=29,则Z

2、129=

60、9取=60新的传动比i

2、

14、几何尺寸计算

(1)计算分度圆直径

(2)计算中心距a1

55、75mm(3)计算齿轮宽度b101、5=101、5mmB=104、3mm,B=101、5mm

5、大小齿轮各参数见下表低速级齿轮相关参数表6-2(单位mm)名称符号计算公式及说明模数m

3、5压力角齿顶高=

3、5齿根高=(+)m=

4、375全齿高=(2+)m=

7、785分度圆直径=mZ=101、5=m210齿顶圆直径=()m=108、5=()m=217齿根圆直径=()m=

85、75=()m=2

99、25基圆直径表6-

27、轴类零件设计

7、1I轴的设计计算

1、求轴上的功率,转速和转矩由前面算得P=

4、75KW,n=440r/min,T=

1、0N

2、求作用在齿轮上的力已知高速级小齿轮的分度圆直径为d=70mm而F=2857NF=F2857=1040N

3、初步确定轴的最小直径现初步估算轴的最小直径。

选取轴的材料为45钢,调质处理据[2]表15-3,取A=112,于是得:

d=A26mm因为轴上应开2个键槽,所以轴径应增大5%-7%故d=

20、33mm,又此段轴与大带轮装配,综合考虑两者要求取d=32mm,查[4]P表14-16知带轮宽B=78mm故此段轴长取76mm。

4、轴的结构设计

(1)拟定轴上零件的装配方案通过分析比较,装配示意图7-1图7-1

(2)据轴向定位的要求确定轴的各段直径和长度1)I-II段是与带轮连接的其d=32mm,l=76mm。

2)II-III段用于安装轴承端盖,轴承端盖的e=

9、6mm(由减速器及轴的结构设计而定)。

根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与I-II段右端的距离为38mm。

故取l=58mm,因其右端面需制出一轴肩故取d=35mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d=35mm,由轴承目录里初选6208号其尺寸为d=40mm80mm18mm故d=40mm。

又右边采用轴肩定位取=52mm所以l=139mm,=58mm,=12mm4)取安装齿轮段轴径为d=46mm,齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为75mm为是套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度故取l=71mm。

齿轮右边Ⅶ-Ⅷ段为轴套定位,且继续选用6208轴承,则此处d=40mm。

取l=46mm(3)轴上零件的周向定位齿轮,带轮与轴之间的定位均采用平键连接。

按d由[5]P表4-1查得平键截面b,键槽用键槽铣刀加工长为70mm。

同时为了保证带轮与轴之间配合有良好的对中性,故选择带轮与轴之间的配合为,同样齿轮与轴的连接用平键14,齿轮与轴之间的配合为轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸参考[2]表15-2取轴端倒角为

2、其他轴肩处圆觉角见图。

5、求轴上的载荷先作出轴上的受力图以及轴的弯矩图和扭矩图7-2图7-2现将计算出的各个截面的M,M和M的值如下:

F=1402NF=1613NF=2761NF=864NM=86924NM=M=NM==NM=M=NT=

1、3N

6、按弯扭合成应力校核轴的强度进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯矩图和扭矩图中可以看出截面A是轴的危险截面。

则根据[2]式15-5及上面的数据,取=0、6轴的计算应力:

=

23、7MP前面选用轴的材料为45钢,调制处理,由[2]表15-1查得[]=60Mp,,故安全。

7、2II轴的设计计算

1、求轴上的功率,转速和转矩由前面的计算得P=

5、76KW,n=440,T=

1、3N

2、求作用在齿轮上的力已知中间轴大小齿轮的分度圆直径为d=3

27、5mmd=108mm而F=767NF=F767=279N同理可解得:

F=10498N,F=F1730N

3、初步确定轴的最小直径现初步估算轴的最小直径。

选取轴的材料为45钢,调质处理据[2]表15-3,取A=110,于是得:

d=A

43、0mm因为轴上应开2个键槽,所以轴径应增大5%-7%故d=

45、2mm,又此段轴与轴承装配,故同时选取轴承,因为轴承上承受径向力,故选用深沟球轴承,参照工作条件可选6210其尺寸为:

d=50故d=50mm右端用套筒与齿轮定位,套筒长度取24mm所以l=48mm

4、轴的结构设计

(1)拟定轴上零件的装配方案通过分析比较,装配示意图7-4图7-4

(2)据轴向定位的要求确定轴的各段直径和长度1)IIIV段为大小齿轮的轴向定位,此段轴长度应由同轴条件计算得l=15mm,d=68mm。

3)IV-V段为低速级小齿轮的轴向定位,由其宽度为113mm可取l=109mm,d=56mm4)V-VI段为轴承同样选用深沟球轴承6210,左端用套筒与齿轮定位,取套筒长度为24mm则l=48mmd=50mm(3)轴上零件的周向定位两齿轮与轴之间的定位均采用平键连接。

按d由[5]P表4-1查得平b,按d得平键截面b=16其与轴的配合均为。

轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸参考[2]表15-2取轴端倒角为

2、个轴肩处圆觉角见图。

5、求轴上的载荷先作出轴上的受力图以及轴的弯矩图和扭矩图如图7-4。

现将计算出的各个截面的M,M和M的值如下:

F=719NF=2822NF=4107NF=7158NM=49611NM=NmmM=-NM=-NM==NM==NT=

5、6N图7-

46、按弯扭合成应力校核轴的强度进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯矩图和扭矩图中可以看出截面B和Ⅵ的右侧是轴的危险截面,对该轴进行详细校核,对于截面B则根据[2]式15-5及上面的数据,取=0、6,轴的计算应力=

50、6MP前面选用轴的材料为45钢,调制处理,由[2]表15-1查得[]=60Mp,。

对于Ⅵ的右侧由[2]表15-1查得由[2]表3-8查得由[2]附图3-4查得由[2]中和得碳钢的特性系数,取,故综合系数为故Ⅵ右侧的安全系数为>S=

1、5故该轴在截面Ⅵ的右侧的强度也是足够的。

综上所述该轴安全。

7、3III轴的设计计算

1、求轴上的功率,转速和转矩由前面算得P=

5、28KW,n=

28、6r/min,T=

1、76N

2、求作用在齿轮上的力已知低速级大齿轮的分度圆直径为d=352mm而F=10081NF=FN

3、初步确定轴的最小直径现初步估算轴的最小直径。

选取轴的材料为45钢,调质处理据[2]表15-3,取A=110,于是得:

d=A

62、8mm同时选取联轴器型号。

联轴器的计算转矩T=K查[2]表14-1取K=

1、3、则:

T按计算转矩应小于联轴器的公称转矩的条件查[5]P表8-7可选用LX4型弹性柱销联轴器。

其公称转矩为N。

半联轴器孔径d=63mm,故取d=63mm半联轴器长度L=142mm,半联轴器与轴配合的毂孔长度l=132mm。

4、轴的结构设计

(1)拟定轴上零件的装配方案通过分析比较,装配示意图7-5图7-5

(2)据轴向定位的要求确定轴的各段直径和长度1)为满足半联轴器的轴向定位,I-II右端需制出一轴肩故II-III段的直径d=65mm;左端用轴端挡圈定位取轴端挡圈直径D=65mm。

半联轴器与轴配合的毂孔长为132mm,为保证轴端挡圈只压在联轴器上而不压在轴上,故I-II段长度应比L略短一些,现取l=132mm、2)II-III段是固定轴承的轴承端盖e=12mm。

据d=65mm和方便拆装可取l=95mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求d=70mm,由轴承目录里初选6214号其尺寸为d=70mm125mm24mm,l=24mm由于右边是轴肩定位,d=82mm,l=98mm,d=88mmmm,l=12mm。

4)取安装齿轮段轴径为d=80mm,已知齿轮宽为108mm取l=104mm。

齿轮右边Ⅶ-Ⅷ段为轴套定位,轴肩高h=6mm则此处d=70mm。

取l=48mm(3)轴上零件的周向定位齿轮,半联轴器与轴之间的定位均采用平键连接。

按d由[5]P表4-1查得平键截面b键槽用键槽铣刀加工长为125mm。

选择半联轴器与轴之间的配合为,同样齿轮与轴的连接用平键22齿轮与轴之间的配合为轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为m6。

(4)确定轴上圆角和倒角尺寸参考[2]表15-2取轴端倒角为

2、个轴肩处圆觉角见图。

5、求轴上的载荷先作出轴上的受力图以及轴的弯矩图和扭矩图如图7-6。

现将计算出各个截面处的M,M和M的值如下:

F=12049NF=2465NF=3309NF=6772NM=-NM=NM==NT=

1、76N图7-6

6、按弯扭合成应力校核轴的强度进行校核时,通常只校核危险截面的强度,从轴的结构图以及弯矩图和扭矩图中可以看出截面A是轴的危险截面,则根据[2]式15-5及上面的数据,取=0、6,轴的计算应力=

24、0MP前面选用轴的材料为45钢,调制处理,由[2]表15-1查得[]=60Mp,,故安全。

8、轴承的寿命计算

8、1I轴上的轴承6208寿命计算预期寿命:

已知N,47000h>44800h故I轴上的轴承6208在有效期限内安全。

8、2II轴上轴承6210的寿命计算预期寿命:

已知,20820h<44800h故II轴上轴承6210须在四年大修时进行更换。

8、3Ⅲ轴上轴承6214的寿命计算预期寿命:

已知h>44800h故III轴上的轴承6214满足要求。

9、键连接的校核

9、1I轴上键的强度校核查表4-5-72得许用挤压应力为Ⅶ-Ⅷ段键与键槽接触疲劳强度故此键能安全工作。

Ⅱ-Ⅲ段与键槽接触疲劳强度故此键能安全工作。

9、2II轴上键的校核查表4-5-72得许用挤压应力为II-III段键与键槽接触疲劳强度故此键能安全工作。

IV-V段与键槽接触疲劳强度故此键能安全工作。

9、3III轴上键的校核查表4-5-72得许用挤压应力为I-II段键与键槽接触疲劳强度故此键能安全工作。

Ⅵ-Ⅶ段与键槽接触疲劳强度故此键能安全工作。

10、润滑及密封类型选择

10、1润滑方式齿轮采用飞溅润滑,在箱体上的四个轴承采用脂润滑,在中间支撑上的两个轴承采用油润滑。

10、2密封类型的选择

1、轴伸出端的密封轴伸出端的密封选择毛毡圈式密封。

2、箱体结合面的密封箱盖与箱座结合面上涂密封胶的方法实现密封。

3、轴承箱体内,外侧的密封

(1)轴承箱体内侧采用挡油环密封。

(2)轴承箱体外侧采用毛毡圈密封。

11、减速器附件设计

11、1观察孔及观察孔盖的选择与设计观察孔用来检查传动零件的啮合,润滑情况,并可由该孔向箱内注入润滑油。

平时观察孔盖用螺钉封住,。

为防止污物进入箱内及润滑油渗漏,在盖板与箱盖之间加有纸质封油垫片,油孔处还有虑油网。

查表[6]表15-3选观察孔和观察孔盖的尺寸分别为和。

11、2油面指示装置设计油面指示装置采用油标指示。

11、3通气器的选择通气器用来排出热膨胀,持气压平衡。

查表[6]表15-6选型通气帽。

11、4放油孔及螺塞的设计放油孔设置在箱座底部油池的最低处,箱座内底面做成外倾斜面,在排油孔附近做成凹坑,以便能将污油放尽,排油孔平时用螺塞堵住。

查表[6]表15-7选型外六角螺塞。

11、5起吊环的设计为装卸和搬运减速器,在箱盖上铸出吊环用于吊起箱盖。

11、6起盖螺钉的选择为便于台起上箱盖,在上箱盖外侧凸缘上装有1个启盖螺钉,直径与箱体凸缘连接螺栓直径相同。

11、7定位销选择为保证箱体轴承座孔的镗孔精度和装配精度,在精加工轴承座孔前,在箱体联接凸缘长度方向的两端,个装配一个定位销。

采用圆锥销,直径是凸缘连接螺栓直径的0、8倍。

12、主要尺寸及数据箱体尺寸:

箱体壁厚=10mm箱盖壁厚=8mm箱座凸缘厚度b=15mm箱盖凸缘厚度b=15mm箱座低凸缘厚度b=25mm地脚螺栓直径d=24mm地脚螺栓数目n=4轴承旁联接螺栓直径d=M16机座与机盖联接螺栓直径d=M12联接螺栓d的间距l=150mm轴承端盖螺钉直径d=M10窥视孔盖螺钉直径d=M8定位销直径d=10mmd,d,d至外箱壁的距离c=34mm,22mm,18mmd,d至凸缘边缘的距离c=28mm,16mm轴承旁凸台半径R=16mm凸台高度根据低速轴承座外半径确定外箱壁至轴承座端面距离L=70mm大齿轮顶圆与内箱壁距离=14mm齿轮端面与内箱壁距离=12mm箱盖,箱座肋厚m=m=7mm轴承端盖外径D2:

凸缘式端盖:

D+(5~

5、5)d以上数据参考机械设计课程设计指导书传动比:

原始分配传动比:

i=

2、2i=

4、70i=

3、27修正后:

i=

2、24i=

4、68i=

3、26各新的转速:

n=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1