自激振荡的应用分析.docx

上传人:b****7 文档编号:8712987 上传时间:2023-02-01 格式:DOCX 页数:13 大小:81.96KB
下载 相关 举报
自激振荡的应用分析.docx_第1页
第1页 / 共13页
自激振荡的应用分析.docx_第2页
第2页 / 共13页
自激振荡的应用分析.docx_第3页
第3页 / 共13页
自激振荡的应用分析.docx_第4页
第4页 / 共13页
自激振荡的应用分析.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

自激振荡的应用分析.docx

《自激振荡的应用分析.docx》由会员分享,可在线阅读,更多相关《自激振荡的应用分析.docx(13页珍藏版)》请在冰豆网上搜索。

自激振荡的应用分析.docx

自激振荡的应用分析

自激振荡的应用分析

(安庆师范学院物理与电气工程学院安徽安庆246011)

摘要:

自激振荡电路广泛应用于信号产生电路中,有关它的应用和消除方法是电子电路中的热门话题。

本文从自激振荡的工作原理出发,详细分析了自激振荡在RC振荡电路和LC振荡电路中的工作原理,最后讨论了自激振荡的抑制方法。

关键词:

自激振荡,RC自激振荡,LC自激振荡,自激振荡的消除

1引言

自激振荡常用于正弦波发生器、交流控制信号等。

自激振荡的应用于许多电路,如正弦波振荡器广泛用于各种电子设备中,在模拟电子技术中属于必不可少的一种元件。

它是一种不需要输入信号控制就能自动地将直流能量转换为特定频率和振幅的正弦交变能量的电路。

常见的自激振荡电路如RC振荡电路和LC振荡电路。

RC振荡电路中,RC网络既是选频网络又是正反馈电路中的一部分。

该电路特点是电路简单,经济但稳定性不高。

相比之下还有LC振荡电路,LC振荡器的选频网络是LC谐振回路,它们的振荡频率都比较高,LC振荡电路的特点是频率范围宽,容易起振,但频率稳定性不高。

本文从自激振荡的产生原理入手,进而讨论其抑制方法及应用。

正弦波振荡电路用来产生一定频率和幅值的正弦交流信号。

它的频率范围很广,可以从一赫兹以下到几百兆赫兹以上;输出功率可以从几毫瓦到几十千瓦;输出的交流电能是从电源的直流电能转换而来的。

2自激振荡的概念和形成条件以及自激振荡的稳定

自激振荡就是电路中有一部分信号从输出端反馈到输入端,反馈回的信号加强了电路的振荡。

下面以常见的负反馈放大电路和正反馈放大电路为例解释一下自激振荡[1]。

图1负反馈放大电路

图2正反馈放大电路

比较图1和图2就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于振荡电路的输入信号

=0,所以

=

由于正、负号的改变,有反馈的放大倍数为:

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路组成有:

放大电路、正反馈电路、选频网络、稳幅电路。

为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由R、C和L、C等电抗性元件组成。

正弦波振荡器广泛用于各种电子设备中,在模拟电子技术中属于必不可少的一种元件。

它是一种不需要输入信号控制就能自动地将直流能量转换为特定频率和振幅的正弦交变能量的电路。

正弦波振荡器是自激振荡的一个非常重要的应用。

根据傅里叶级数的定义可以知道,任何周期性的激励电压都可以分解成许多不同频率的正弦时间函数之和,再根据自激振荡的原理,只有频率为一特定值

的正弦波才能够通过电路的正反馈系统(反馈系统本身可能为负反馈系统,但由于电容的存在,反馈信号与输入信号同相)增强自身,其余频率的信号都逐渐衰减到零。

由于想要的正弦波信号为一稳定信号,因此在正弦波振荡器中加入了稳幅环节,其中,在分立元件组成的放大电路中,晶体管的非线性特性能够满足这个条件。

最后当电路达到稳定时,

产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。

只不过负反馈放大电路中如图2所示是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈如图3所示。

在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。

(1)产生自激振荡必须同时满足两个条件:

1)幅度平衡条件|AF|=1

2)相位平衡条件

(n=0,1,2,3···)其中,A指基本放大电路的增益(开环增益),F指反馈网络的反馈系数

同时起振必须满足|AF|略大于1的起振条件基本放大电路必须由多级放大电路构成,以实现很高的开环放大倍数,然而在多级放大电路的级间加负反馈,信号的相位移动可能使负反馈放大电路工作不稳定,产生自激振荡。

负反馈放大电路产生自激振荡的根本原因是A(环路放大倍数)附加相移.单级和两级放大电路是稳定的,而三级或三级以上的负反馈放大电路,只要有一定的反馈深度,就可能产生自激振荡,因为在低频段和高频段可以分别找出一个满足相移为180度的频率(满足相位条件),此时如果满足幅值条件|AF|=1,则将产生自激振荡。

因此对三级及三级以上的负反馈放大电路,必须采用校正措施来破坏自激振荡,达到电路稳定工作目的。

(2)检查电路是否稳定工作的方法

方法一:

根据AF的幅频和相频波特图来判断。

设LAF=20lg|AF|(dB)

1)当Δφ=-180°时(满足相位条件):

若LAF<0,则电路稳定;若LAF≥0(满足幅度条件),则自激。

2)当|AF|=1,即LAF=0dB时(满足幅度条件):

若|Δφ|<180,移相不足,不能自激;若|Δφ|≥180°,满足相位条件,能自激。

3)LAF=0时的频率为f0,Δφ=180°时的频率为f,当f0用上述三个判据中任何一个判断均可,需要注意的是,当反馈网络为纯电阻时,反馈系数F为实数,AF的波特图与A的波特图成为相似形。

为简便起见,通常只画出A的波特图进行研究。

因为F为已知(或可求),20lg(1/F)是一条水平线,它与A的幅频波特图相交于一点,这交点满足|A|=1/F,即|AF|=1(对应于20lg|AF|=0),根据交点处的相位小于-180°就能判断稳定与否。

方法二:

只根据幅频特性,无需相频特性的判别法。

因为20lg|AF|=0时,Δφ=-180°产生自激。

幅度条件改写成:

20lg|A|+20lg|F|=0。

即:

20lg|A|-20lg1/|F|=0,20lg|A|=20lg1/|AF|≈20lg|Af|。

因此,自激条件又可描述为,当Δφ=-180°时,如果开环增益近似等于闭环增益将自激。

而开环增益的-20dB/dec段,对应于Δφ=-45°~-135,-40dB/dec段对应于Δφ=-135°~-225°。

所以在开环幅频特性的波特图上,直接画闭环增益曲线,并令两者相交,若交于-20dB/dec段对电路稳定,交于-40dB/dec段时,电路可能自激。

(3)影响电路稳定性的主要因素

1)极点数越多越不稳定,单极点不会自激;两个极点的电路若不考虑寄生参数的影响也不会自激,但寄生参量实际上是存在的,因此有可能产生自激;三个极点的电路可能产生自激。

2)极点频率越相互靠近,频率特性下降得就越快,就越容易产生自激。

各极点重合时,稳定性最差。

3)负反馈越深,越容易满足自激的幅度条件,电路越容易自激。

(4)防止高频自激的原则

1)尽量采用单级或两级负反馈。

单级负反馈肯定稳定,两级负反馈即使不稳定也容易通过补偿消除自激。

2)各级放大电路的参数尽量分散,使极点拉开。

3)限制负反馈深度,这是不得已的消极方法。

无论采用哪种措施,其目的都是使开环频率特性穿过0dB时的斜率尽量为-20dB/dec,以保证电路可靠地工作。

如果穿越0dB时的斜率为-40dB/dec,电路可能稳定,也可能不稳定,这主要看后面极点的影响及寄生参数的情况。

即使稳定,相位裕度也很小。

若以-60dB/dec的斜率穿越0dB线,则系统一定不稳定。

因此说,消除自激的指导思想是:

希望极点数少些,极点频率拉开些,-20dB/dec段长些。

由上述条件可以知道,反馈越深,越容易产生自激振荡。

基本放大电路中,单级和两级放大电路是稳定的,而三级或三级以上的负反馈放大电路,只要有一定的反馈深度,就可能产生自激振荡。

(5)振荡的建立与稳定

实际上,振荡不需要上述假设就可建立起来。

接通电源的瞬间,总会有通电瞬间的电冲击、电干扰、晶体管的热噪声等,尽管这些噪声很微弱,也不是单一频率的正弦波,但却是由许多不同频率的正弦波叠加组合而成的。

在不断放大→反馈→选频→放大→反馈→选频…的过程中,振荡就可以自行建立起来。

这个过程可简述为:

电干扰→放大→选频→正反馈→放大→选频→正反馈→…

显然,建立过程中,每一次反馈回来的信号都比前一次大。

那么,振荡输出会不会无休止的增长呢?

晶体管是一个非线性元件,只有在线性区才会有放大作用。

开始振荡时,信号较小,工作在线性区,

正常值,正反馈,使

;当信号增大到进入非线性区时,输出信号产生削波失真,在信号的一个周期的部分时间内才有放大作用,平均放大量要减小,

也随之下降,当降到

时,输出和反馈的振幅不再增长,振荡就稳定下来了。

可见,稳幅的关键在于晶体管的非线性特性。

所以:

起振条件:

稳定条件(平衡条件):

3自激振荡的应用

自激振荡的原理可用于各种机械装置。

如专利号为2的汽油机自激振荡直流互激振荡交流点火电源。

正弦波振荡器可用于函数信号发生器,输出信号可作为模拟电子电路的测试信号和控制信号。

此外,正弦波振荡器还可应用于测量、遥控、通信、广播、自动控制、热处理和超声波电焊、高频感应加热等加工设备之中。

(1)RC振荡电路

图3RC振荡电路

图3所示为RC振荡电路。

该电路输出功率小、频率低。

RC桥式正弦波振荡电路的主要特点是采用RC串并联网络作为选频和反馈网络。

因此我们必须先了解它的频率特性,然后再分析这种正弦振荡电路的工作原理。

RC串并联网络如图4所示。

RC串并联选频网络的选频特性:

选出单一频率信号,用正反馈信号作为输入信号。

如图4所示电路的阻抗可定义为:

,当

时,

同相。

此时只需满足输出信号与反馈信号同相且

即可满足电路产生稳定正弦振荡的条件。

图4RC串并联电路

RC串并联网络幅频响应如图5所示。

图5RC串并联网络频率响应

RC串并联网络相频响应如图6所示。

图6RC串并联网络相频响应

低频等效电路如图7所示。

在电路中集成运放作为一个完整的器件来对待,集成运放主要用于频率不高的场合。

图7低频等效电路

RC串并联网络低频等效电路中的一个幅频响应如图8所示。

图8RC串并联网络频率效应

RC串并联网络的相频响应如图9所示。

图9RC串并联网络相频效应

高频等效电路如图10所示。

图10高频等效电路

高频等效电路中RC串并联网络响应如图12所示。

它是高频等效电路中的一个幅频响应。

图11RC串并联网络频率效应

高频等效电路中RC串并联网络高频等效电路的相频响应如图12所示。

图12RC串并联网络相频效应

RC串并联网络总体情况就是这些方面。

为了讨论方便,假定输入电压V1是正弦波信号电压,其频率可变,而幅值保持恒定。

如频率足够低,此时,选频网络可近似地用RC高通电路表示。

当频率足够高时,则选频网络近似地RC低通电路来表示。

由此可以推出,在某一确定频率下,其输出电压幅度可能有某一最大值;同时,相位角f从超前(趋于90°)到滞后(趋于-90°)的过程中,在某一频率f0下必有f=0。

(2)LC振荡电路

图13LC振荡电路

图13所示LC振荡电路:

该电路具有输出功率小,频率低的特点。

LC振荡电路的选频电路由电感和电容构成,可以产生高频振荡(几百千赫以上)。

由于高频运放价格较高,所以一般用分离元件组成放大电路。

LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。

常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。

这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。

LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。

当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。

所以LC振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。

有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。

开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。

并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。

设基极的瞬间电压极性为正。

经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。

LC振荡电路物理模型的满足条件

①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。

②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。

③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。

能产生大小和方向都随周期发生变化的电流叫振荡电流。

能产生振荡电流的电路叫振荡电路。

其中最简单的振荡电路叫LC回路。

振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。

充电完毕(放电开始):

电场能达到最大,磁场能为零,回路中感应电流i=0。

放电完毕(充电开始):

电场能为零,磁场能达到最大,回路中感应电流达到最大。

充电过程:

电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。

从能量看:

磁场能在向电场能转化。

放电过程:

电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。

从能量看:

电场能在向磁场能转化。

在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。

LC振荡电路特点

共射变压器耦合式振荡器功率增益高,容易起振,但由于共发射极电流放大系数B随工作频率的增高而急剧降低,故共振荡幅度很容易受到振荡频率大小的影响,因此常用于固定频率的振荡器。

以上就是为您介绍的关于LC振荡电路工作原理的相关知识,通过上述讲解,LC回路是所有振荡电路中最简单的一个,根据输出波形的不同,振荡电路可以分为非正弦波振荡和正弦波振荡两种,而正弦振荡电路又可分为LC振荡电路和RC振荡电路。

4自激振荡的消除方法

负反馈的引入是为了改善或稳定电路性能,自激振荡的存在对于想要正常放大信号的放大电路有着较大影响,因此需要消除自激振荡。

相位补偿是自激振荡的主要消除方法,它分为有两种:

一种为滞后补偿,一种为超前补偿。

这两中补偿方式的本质都是破坏产生自激振荡的条件,或使

不存在,或使频率为

应当指出,常用的集成运放内部已经设置自激振荡的补偿网络,但出于集成运放性能的考虑,它并不能完全消振。

因此,适当的外部补偿方式还是非常必要的。

(1)滞后补偿

滞后补偿的主要思想是设法拉开开环幅频特性函数第一极点频率和第二极点频率之间的频率间隔,也就是加长开环增益函数幅频特性波特图以

十倍频程速率下降的那一段宽度。

根据不同的补偿方式和需要,分为以下三种:

电容滞后补偿:

这种补偿是在放大电路中时间常数最大的回路里并接电容,使回路的时间常数更大,对应的拐点频率变低。

这种方法的优点是较为简单,但代价是频带变窄。

滞后补偿:

电容滞后补偿损失的带宽较大,这是电容两侧两级放大电路的

不同造成的,若将电容改为串联的

,则可以通过调整

的参数来保证两级放大电路的相同

,即从

开始,开环增益函数幅频特性波特图以

十倍频程速率下降,损失的带宽减小。

密勒效应补偿:

密勒效应的定义为:

反相放大电路中,输入与输出之间的分布电容或寄生电容由于放大器的放大作用,其等效到输入端的电容值会扩大

倍,其中

是该级放大电路电压放大倍数。

这个定理的可以通过输入,输出阻抗的定义来证明。

利用这个效应,可以在一级放大电路的输入端及输出端之间接一个小电容。

这样利于集成电路的设计。

(2)超前补偿

超前补偿是通过使放大电路增益为

时的相位超前来作用的。

一般的反馈系统为纯电阻电路。

若在反馈电路中加一电容,则可以使

的超前相移增大。

(3)电容校正(主极点校正),在极点频率最低的一级接入校正电容C,使主极点频率降低,-20dB/dec段拉长,尽量获得单极点结构,以破坏幅度条件,使电路稳定。

(4)RC校正(极点—零点校正),用RC串联网络代替电容C,这一方面使原来的主极点降低,另一方面引入了一个新的零点,此零点与原来第二个极点抵消,使极点数减少,而且极点也拉开了。

这种补偿可获得较宽的通频带。

(5)反馈电容校正,校正电容跨接于晶体管的b、c之间,形成该级的电压并联负反馈,这种校正方法可用较小的电容达到消振目的。

5总结

当采用两级级联放大时,输出信号产生自己振荡,调节两级反馈电路放大倍数无法消除振荡。

当反馈电路中同时满足以下两个条件会产生自激振荡:

(1)反馈电路中增益大于1;

(2)反馈电路中放大部分与反馈部分相位偏差之和满足180度的奇数倍。

参考文献

[1]华成英,童诗白,模拟电子技术基础,高等教育出版社,2007。

[2]杨家树,电路与模拟电子技术,中国电力出版社,2006。

[3]乜国荃,负反馈电路中的自激振荡和正弦波振荡,青海师专学报(自然科学版),2002。

[4]闫稳,王梅,张桢,一种高速运算放大器电路自激振荡机理分析与改善方法,通信电源技术,2010。

[5]康华光,陈大钦,电子技术基础(模拟部分),高等教育出版社,1999。

[6]孙肖子,张企民,模拟电子技术基础,西安电子科技大学出版社,1999。

[7]阎石,数字电子技术基础,高等教育出版社,2004。

 

Analysisandapplication ofselfoscillation

WangYang 

(Schoolofphysicsandelectricalengineering AnqingTeachersCollege Anhui Anqing246011)

Abstract:

 theself-excitedoscillation circuitiswidelyusedin signalgenerationcircuit, applicationand its eliminationmethod isahottopic intheelectroniccircuit. Thispaper fromthe workingprincipleof theself-excitedoscillationstarting, adetailedanalysisofthe workingprincipleof theself-excitedoscillationintheRC oscillatingcircuit andLC oscillationcircuit, finally discussesthesuppressionmethods ofselfoscillation.

Keywords:

 RC self-excitedoscillation, oscillation, LC self-excitedoscillation,eliminationof selfoscillation

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1