非通航孔桥复合桩施工打桩平台版.docx

上传人:b****5 文档编号:8627561 上传时间:2023-02-01 格式:DOCX 页数:42 大小:1.79MB
下载 相关 举报
非通航孔桥复合桩施工打桩平台版.docx_第1页
第1页 / 共42页
非通航孔桥复合桩施工打桩平台版.docx_第2页
第2页 / 共42页
非通航孔桥复合桩施工打桩平台版.docx_第3页
第3页 / 共42页
非通航孔桥复合桩施工打桩平台版.docx_第4页
第4页 / 共42页
非通航孔桥复合桩施工打桩平台版.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

非通航孔桥复合桩施工打桩平台版.docx

《非通航孔桥复合桩施工打桩平台版.docx》由会员分享,可在线阅读,更多相关《非通航孔桥复合桩施工打桩平台版.docx(42页珍藏版)》请在冰豆网上搜索。

非通航孔桥复合桩施工打桩平台版.docx

非通航孔桥复合桩施工打桩平台版

4.3非通航孔钢管复合桩施工

4设计概况

港珠澳大桥非通航孔分为深水区及浅水区非通航孔。

承台采用埋置式,承台顶标高与海床标高一致。

基桩均采用变截面钢管复合桩,钢管桩壁厚为22mm,钢管全长范围内浇筑填芯砼。

低墩区钢管复合桩有钢管段直径为200cm,无钢管段直径为180cm;高墩区钢管复合桩有钢管段直径220cm,无钢管段直径200cm。

浅水区非通航孔桥单个承台采用4根桩。

深水区非通航孔桥单个承台采用6根桩。

钢箱梁变宽段桥墩承台采用8根桩。

钢管复合桩钢管的最大入床深度为50m,钢管伸入承台。

钢管复合桩经过淤泥、粘土、粉砂、中砂层后,嵌入全风化混合花岗岩层。

为确保钢管与砼之间能够较好的协同受力,在钢管内外侧焊接凸起的剪力板。

表4-1非通航孔桥钢管复合桩统计表

标段号

区域

桥墩号

墩数

里程桩号

海床地面标高

最大桩长

CB03标

深水区非通航孔桥

16~50#

60~87#

63

K13+413~K17+263

K18+783~K21+863

-5~-

m

跨越崖13-1气田管线桥

51~53#

3

K17+263~K17+523

-6.2m

CB04标

深水区非通航孔桥

88~136#

142~151#

60

K21+973~K27+253

K28+247~K29+237

-5~

CB05标

浅水区非通航孔桥

152~203#

210~220#

63

K29+347~K33+632

K34+520~K35+890

~-

4.3.2施工中的主要难点

根据本工程埋置式装配承台的特点,经过分析得出,钢管打入桩施工主要存在以下几个难点:

⑴、打入桩平面位置和垂直度的控制

根据设计要求,钢管桩平面位置偏差不得大于5cm,垂直度必须控制在L/400,采用传统的打桩船直接插打方案,精度无法满足要求。

因此,我公司经过反复研究确定,采用复合式海上打桩平台、逐桩导向沉桩方案。

⑵、打入桩相对位置的控制

由于承台预留孔的尺寸仅比钢管桩外径大5cm,为了确保预制件安装的顺利进行,需要对单墩钢管打入桩的相对平面位置进行精确控制。

经过研究确定,采用复合式海上打桩平台、能够将单墩所有基桩〔4~8根〕的相对平面位置精确控制在2cm以内,满足安装精度的要求。

⑶、63m长度钢管桩的插桩、振桩

钢管桩桩长初步确定为64m,加上导向平台水面以上高度11m,插桩浮吊的起吊高度必须大于74m,以及如何确保超长桩振动下沉过程中的自身稳定性。

经过研究确定,采用复合式海上打桩平台,主钩最大起吊高度达120m,最大起吊重量700t,在振桩过程中,根据桩身的自由高度,选用“由小到大〞的振动频率,缓慢振动下沉。

⑷、采用振动锤振桩,可能无法下沉到设计标高

基桩入土超过一定深度后,振动锤产生的振动衰减将非常明显,特别是当桩底进入岩层外表后,采用振动锤沉桩将变得非常困难。

针对可能出现的状况,确定备用1台APE500型液压冲击锤,配备替打,当群桩出现振动下沉困难时,采用液压冲击锤逐根冲击下沉至设计标高。

⑸、振桩过程中产生的振动波,可能对白海豚的生活造成干扰

振桩过程中产生的振动波和噪音,将会对白海豚的超声回声定位系统产生干扰,从而影响白海豚的生存。

为了解决这个问题,首先选用低噪音的进口液压振动锤,将可能产生的噪音造成最低;其次在振桩过程中,在平台周围设置“气泡屏幕〞,降低噪音在水中的传播。

4.3.3钢管复合桩沉桩施工方案比选

钢管打入桩桩长,嵌入承台,插打时要露出水面,总长度约64m。

根据预制装配式承台施工要求,打入桩平面位置偏差不大于5cm,倾斜度控制在L/400,现对打桩船直接插打、整体导向架单桩插打、群桩整体下沉方案进行比选如下:

 

表2.3.2-1钢管复合桩沉桩施工方案比选表

比拟工程

打桩船直接插打方案

复合式打桩平台沉桩方案

群桩整体下沉方案

方案说明

采用打桩船精确定位,采用液压打桩锤直接插打。

采用复合式打桩平台,集提桩、插桩、定位、导向、插桩功能于一体。

采用海上定位平台,GPS测量定位,大型浮吊起吊振动锤联动,群桩整体下沉

质量控制

打桩船GPS定位,平面位置偏差不大于10cm,倾斜度控制精度能到达L/200。

海上平台GPS定位,平面位置偏差不大于5cm,倾斜度精度能到达L/500。

平面位置、倾斜度、群桩相对位置能够精确控制在允许的范围内。

所需设备

打桩船、拖轮、运桩船

打桩平台、拖轮、运桩船

定位平台、拖轮、运桩船、浮吊、振动锤〔联动〕

工效

工效较高,打桩船就位、抛锚、精确定位、插打钢管桩。

成效高,前端为全回转打桩架,一次定位可完成单墩钢管桩的插打。

工效较高,定位平台就位后,群桩整体起吊、下沉到位。

平安

海上作业时间短,海上作业工作量相对较小,平安风险小。

海上作业时间短,固定平台,作业平安风险小。

群桩在平驳上方拼装成型,一次性下沉到位,施工平安风险相对较低。

经济性

需要打桩船、运桩船等主要设备,根本无临时设施,投入相对较小。

需要投入专用打桩平台、运桩船等设备,根本无临时设施,投入一般。

需要定位平台、运桩船、大型浮吊、导向装置、液压抱箍、6锤联动、施工投入相对较大。

优点

工期短、投入小、平安风险较小

工期短、平安风险小,施工精度高

基桩定位精度可控、群桩相对平面位置精度高。

缺点

定位精度相对较差,倾斜度很难到达L/400。

需要专用打桩平台,设备研发技术含量高

投入较大,需要抱桩器、6锤联动、大吨位浮吊。

钢管桩需要二次组拼。

结论

比拟方案

推荐方案

比拟方案

通过以上比照,为了确保基桩的施工精度满足设计的要求,采用我公司联合研制的复合式海上打桩平台方案。

4.3.4钢管复合桩施工流程

钢管复合桩施工工艺流程图见图-1。

图-1钢管复合桩施工流程图

4.3.5船机设备选用及辅助平台、导向装置设计

采用打桩平台辅助沉桩方案,需要的主要船机设备及设施有:

✧施工船舶:

运桩船、打桩平台、抛锚艇、拖轮及交通船

✧沉桩设备:

液压振动锤、液压冲击锤、替打、钻机、钻孔平台

✧导向装置:

打桩导向架

✧测量设备:

GPS定位系统、激光垂准仪、超声波探孔仪

4.3.5.1施工船舶选定

㈠、运桩船选定

㈡、打桩平台选定

为了满足港珠澳大桥工程群桩根底的沉桩需要,我公司与专门研制改装了专用复合式海上打桩平台,该船为钢制四桩腿非自航式复合打桩船,集提桩、插桩、定位、导向、打桩功能于一体,前端采用全回转打桩架,一次定位可完成一个墩位的全部打入桩施工。

图-1复合式海上打桩平台示意图

表-1复合式海上打桩平台技术性能参数表

船名

船种

复合式打桩船

国别产地

型长m

船籍港

制造年份

2021年4月

型宽m

空载吃水m

主机功率

4*1100KW

型深m

满载吃水m

最大吊重t

700

主吊t×个

350×2

副吊t×个

110×1

支腿顶升力

4*3000t

⑴.起重局部

该船艏部设有1台最大起重能力700T,最大吊高120m〔距主甲板〕的全回转液压起重机,用于起吊及打桩作业。

船体中部设置副起重机一台,起吊能力200t,最大起吊高度60m。

✧吊装高度计算:

钢管桩设计长度为,考虑后期承台安装需要抱桩,钢管桩顶面标高暂定为+,那么实际桩长约为64m。

海中定位平台顶面高程为+,吊装高度6m。

所以浮吊吊装高度:

H≥桩长+平台高度+振动锤高度+吊装高度=64+11+6=81m。

✧吊装重量计算:

钢管桩单根设计重量86.8t,,起吊重量应为:

Q≥桩重+桩锤重量=86.8+=t。

根据计算可知,该平台船艏设置的700t吊机,起吊高度到达120m,完全能够满足本工程钢管桩的起吊、插桩作业要求。

该打桩平台空载吃水仅,满载吃水仅,能够较好的满足浅水区非通航孔桥施工的需要。

⑵、升降机构

该船共设置4根桩腿,采用插销式液压升降机构,桩腿直径,桩靴局部尺寸×,桩长60m,插销之间的间距。

液压机构单桩正常顶升力为2500t,最大顶升力为3000t,平均顶升速度为12m/h。

⑶、推进装置

该船艉部和艏部各装有2台舵桨装置,用于各墩位之间的短距离机动调遣提供推进动力。

其中艉部舵桨装置型式为全回转可调桨,额定功率710KW×1450rpm,桨叶数为4片,桨叶直径1600mm。

艏部舵桨为导管定距桨型式,4个叶片,叶片直径1280mm,额定功率450KW×1490rpm。

 

.2沉桩设备选定

㈠、液压振动锤选择

①.桩周动侧摩阻力计算

参考提供的桥位区地质情况,对桩周土的振动状况摩阻力计算如下:

表-5桩周土体动侧摩阻力计算汇总表

地层编号

土层名称

层底标高

〔m〕

分层厚度

〔m〕

摩阻力qik

〔KPa〕

动侧摩阻系数μ

动摩阻力Ti(KN)

备注

①1

淤泥

10

钢管桩底标高为-6

①2

淤泥

11

①3

淤泥质粘土

15

③2

淤泥质粉质粘土

30

③3

粉砂夹粉质粘土

30

③31

淤泥质粉质粘土夹粉砂

30

③3

粉砂夹粉质粘土

30

③31

粘土

30

③31

粉质粘土夹粉砂

30

③5

粉质粘土

35

④5

砾砂

95

④51

粘土

55

⑥1

全风化花岗岩

85

⑥2

强风化花岗岩

-

120

⑥3

中风化花岗岩

-113.94

-

120

合计

说明:

表中动侧摩阻系数参考法国PTC公司和美国ICE公司的经验估计值。

根据计算,振动锤的激振力P0必须大于Tv=KN。

②.桩端动阻力计算

钢管桩底深入砾砂层外表,桩端动承载力按3MPa计算:

Rv=π

钢管桩自重:

Q0=868KN;那么振动锤的振动重量Q必须大于Rv-Q0=。

③.振沉钢管桩振幅估算

根据法国PTC公司数据经验,在水下粘性土和砂土中,标准贯入度击数为40~50时,需要的振幅为。

那么要求沉桩时的工作振幅A0必须大于/2=。

根据以上计算,确定选用美国APE公司生产的600型液压振动锤,能够满足各项参数要求:

激振力:

P0≥Tv=KN

≥Rv-Q0=KN

钢管桩工作振幅:

≥。

图-7APE600型液压振动锤

表-6APE600型液压振动锤技术参数

工程

单位

数值

总偏心力矩

230

振动频率

cpm

1400

总最大激振力

KN

总最大上拔力

KN

2224

锤自重〔不包括油管〕

kg

31470

振动重量

kg

14061

总功率

KW

882

长×宽×高

m

㈡、液压冲击锤选择

采用液压振动锤沉桩,当遇到特殊情况如全风化花岗岩外表坚硬时,钢管桩下沉将变得非常困难,为此备用1台APE500U型液压冲击打桩锤,作为钢管桩振动下沉困难时的备用设备,其主要性能参数如下:

表-7APE500u型液压锤主要技术参数表

工程

单位

数值

最大打击能量

kj

500

最大行程

mm

1219

最小行程

mm

152

打击次数

bl/min

28-40

总重

t

64

总长

mm

12078

功率

kw

514

图-8APE500u型液压冲击锤

钢管桩施沉液压锤最大打击力计算如下:

作用在桩身的能量,单位J;

停锤时最小贯入度;

反弹总量,

〔mm〕;

砧的反弹量〔mm〕;

桩体的反弹量〔mm〕;

土壤挤压反弹量〔mm〕;

〔桩+桩贯+砧+锤的非冲击局部总重量〕〔t〕;

锤击体总量〔t〕;

根据APE500液压锤的参数:

取5mm;

取值2mm;

取值12mm;

取值3mm,计算得到

那么:

沉桩所需能量

〔桩身上〕

一般而言,液压锤用于打桩的有效能量利用率或称为效率在0.6~0.85间,取值0.6,因而锤的最大锤击能量:

所以,本工程选用APE500U型液压锤满足施工需要。

㈢、替打选择

替打为锤击沉桩能量传递设备,兼有保护桩头的作用。

替打也是沉桩中使能量损失最大的设备之一。

因此,合理的替打结构能大大的提高锤击能量利用率。

为保证施工连续性,应配备备用替打一个。

“海桩8号〞打桩船上配置的替打〔套筒芯式替打〕实物如图-9所示:

图-9套筒芯式替打实物图

套筒式替大的优点在于重量轻,经过热处理的芯体可以大大减少能量的吸收、不需设缓冲垫,无因缓冲而造成的能量损失,并且能承受较大的冲击力而不致损坏,适宜用于需要极大能量的沉桩施工,与大能量的打桩锤的匹配性较好。

㈣、钻机选定

港珠澳大桥复合桩最大桩长达90m,嵌入中风化花岗岩层2.5D深度,要快速、平安的完成基桩钻孔作业,适宜的钻机选定将非常关键。

⑴.钻头选取

根据桥位区地质情况,为了保证成孔效果,选用不同形式钻头,在土层、砂层、全风化岩层,选用常用的双腰带刮刀钻,既能够保证成孔速度,又能够较好的保证成孔垂直度。

-10双腰带钻头

对于强风化、中风化花岗岩层,其抗压强度可以到达100MPa以上,需要采用球齿滚刀钻进行施工,需要对锤压、钻速等指标进行计算。

✧锤重计算:

按照D直径钻头,配9把12寸滚刀,每把滚刀与岩面接触的镶齿按2排计算,每排按5齿计算,镶齿规格为φ18mm〔顶端约为φ6mm〕。

假定岩层强度为120MPa,那么最小锤压计算为:

P≥σ压×120×106×9×2×5×π×062÷4=t;

由此可得出,球齿滚刀钻头的锤重应该大于t,为了保持较好的钻进速度,可以适当加大。

✧钻机扭矩计算

为了保证施工效率,钻进速度应保持在/h以上,根据经验公式计算:

式中:

v—钻机速度,取0.2m/h;

M—钻机扭矩,N;

D—钻孔直径,;

az—3;

Fz—钻压,取值300000N;

n—钻速,一般为7~12r/min,取值8r/min

通过计算可以得出:

M=253.1;考虑地层影响,要加快钻进速度,钻机扭矩可以适当加大。

根据我公司在青岛海湾大桥、杭州湾跨海大桥等海上大直径超长钻孔灌注桩施工过程中取得的经验,并结合本工程主墩桩根底实际的地质条件,选用性能先进的嘉力臣RC-300全气举反循环钻机,其最大扭矩到达300KN.m,桩锤最大重量可达36t〔含配重25t〕,能够满足本工程钻孔桩施工需要。

嘉力臣RC-300型钻机技术性能表表4.3.5-1

型号

RC-300

钻机

最大钻孔直径(m)

最大扭矩(ton-m)

30

最大钻进速度(rpm)

28

连续钻进速度(rpm)

0-20

最大进给力(ton)

120

最大提升力(ton)

190

连接形式(nw)

300/330

主机架倾斜角(deg.)

33

平台倾斜角(deg.)

20

钻机重量(Ton)

35

总功率〔kw〕

298

钻具

钻杆内径(mm)

300/330

钻杆连接件直径(mm)

530/600

钻杆长度(m)

3

连接件直径(mm)

1200

钻头

外径(mm)

2000~2850

重量(ton)

11

最大配重〔ton〕

25

钻头形式

滚刀钻头、刮刀钻头

嘉力臣RC钻机实物图见2所示:

图-11嘉力臣RC-300钻机

-12嘉力臣钻机工作系统示意图

该类型钻机有自带的柴油发电机组,不需要电力供给,非常适合港珠澳大桥工程这种大规模施工施工。

②、空压机

每台钻机配备1台SPE920型电动移动螺杆式空压机,作为钻孔排渣设备,本合同段合计投入共16台〔备用1台〕。

SPE920型空压机技术性能表表-2

排气压力

〔Mpa〕

排气量

〔m3/min〕

功率

〔KW〕

机组外形尺寸

〔长m×宽m×高m〕

整机重量

〔t〕

20

160

××

③、泥浆别离器

为了钻孔施工高质、高效、经济、文明地进行,通过同类产品比选,结合实际施工需要,选用宜昌黑旋风工程机械生产的ZX-300型泥浆净化器,共16台〔备用1台〕。

ZX-300型泥浆净化器技术性能表表-3

最大泥浆处理量〔m3/h〕

300

筛分出的渣料含水率

≤30%

净化除砂效率〔-㎜级〕

≥90%

整机尺寸〔m〕

××

装机总功率〔kw〕

65

整机重量〔t〕

5

渣料筛分能力〔t/h〕

25~80,可根据钻孔进尺的不同而调整。

到达最大净化除砂效率时泥浆

最大相对密度〔g/㎝3〕

马氏〔苏氏〕漏斗粘度〔s〕

<40〔30〕

含砂量

<20%

图-13ZX-300型泥浆净化器

.3导向装置

采用复合式海上打桩平台,其自带全回转液压导向架,导向架上、下层液压抱箍间距20m,液压抱箍与钢管桩之间间隙考虑15mm,那么导向精确度为:

2×15/20000=1/667,满足设计的L/400的导向精度要求。

图-14导向架示意图

.4测量系统选定

㈠、GPS测量定位系统

导向架安装及打入桩测量精度要求为20mm,在海上施工,需要选择适宜的卫星定位测量系统,才能保证到达精度要求。

我公司司选用TrimbleR6GPS/GNSS接收机,该套系统采用TrimbleR-Track技术,GPS/GLONASS兼容使用可以提供更好的精度几何因子,消除GPS的SA影响,从而提高定位精度。

表-8TrimbleR6GPS/GNSS接收机性能参数表

测量方法

方位

精度值

电码差分GNSS定位

平面

25cm+1pmmRMS

高程

50cm+1pmmRMS

静态和快速静态GNSS测量

平面

+0.1pmmRMS

高程

+0.4pmmRMS

动态测量

平面

10mm+1pmmRMS

高程

20mm+1pmmRMS

初始化时间

<25s

初始化可靠度

>99.9%

㈡、倾斜度监测仪器选用

导向架及钢管桩的垂直度测量采用CHJ401激光垂准仪,自动激光垂准仪采用陀螺架悬挂激光准直器,令重力线与激光束重合,实现激光束的高精度铅直。

具有自动校核、恢复精度的功能,并可随时自检精度误差。

其精度可达1/20万,最大测量距离到达500米。

图-12自动激光垂准仪

钢管桩倾斜度控制指标为L/400,在施工过程中,垂直度的实时监控非常关键。

我公司拟选用Leica公司生产的Nivel220倾斜度测量数据采集系统,用于钢管桩的垂直度监测。

图-14LeicaNivel220倾斜度监测系统介绍

施工工艺

.1复合式海上打桩平台就位

㈠、平台拖运就位、抛锚

打桩平台为自带动力的海上作业船,远航需要采用拖轮进行拖带。

采用拖轮将打桩平台拖运到墩位附近,然后抛“八字锚〞进行初步定位,再启用自带的GPS定位系统进行测量,通过松紧锚缆来实现精确定位。

首个墩位施工完毕后,相邻墩位之间的移位,可以直接通过打桩平台自带的舵桨动力实现。

 

图-1打桩平台抛锚定位示意图

㈡、平台顶升

平台精确定位后,启动液压系统,将4根桩腿插入到土层中,使平台升高到水面以上。

为了保证平台各个支腿的受力均匀,设置了智能液压中央控制系统,通过各个支腿上方的传感器监控各个支腿的受力状况,然后通过智能控制系统,进行调整,确保各个支腿下沉同步、均匀。

由于平台顶升到了水面以上,这样就防止了波浪冲击造成的船体晃动,从而能够保障钢管桩在插打过程中的精确度。

平台顶升的主要步骤为:

⑴、锚机对船体精确定位;

⑵、四套桩腿快速下桩〔不需考虑同步〕,直到桩腿杆进入土层、低压无法下桩为止;

⑶、高压慢速顶升船体〔高压插桩〕,船体抬起〔不需考虑同步〕目测感观船体水平,直到船体顶离水面。

⑷、对角预压桩

当船体升出水面时〔距离水面高度根据作业时浪高条件确定〕需进行预压,即对角两套桩腿与固桩室插销固定支撑,另两套转入船体下降工况,使得该两套桩腿的负载转移到预压桩腿上,并观测油缸的压降,直至预压桩上的负载到达了预压力要求。

对角一组预压完成后,转入另一组预压。

⑸、同步顶升

集中操纵4套升降机构,船体根本保持水平,水平误差控制在10cm以内,直至工作高度,并将船体调平。

 

图-2打桩平台顶升示意图

4.3.6.2导向架的制作与安装

㈠、导向架的制作

导向架由钢结构加工厂家进行制作,制作时要设置胎架、注意控制焊接产生的变形。

导向架上方的智能液压控制系统由同济同鑫科技负责制作,在架体上进行安装。

架体采用驳船运输至施工现场,运输过程中要注意防止发生变形。

㈡、导向架的安装

导向架的安装采用浮吊进行,其主要施工步骤如下:

①.安装平台上方的导向架底座,并保证2个底座;

②.起吊导向架架体,缓慢下放进入平台预留桩孔位置,将导向架与底座之间螺栓连接;

③.启动液压系统调节底座位置,在平台上方放样出桩孔中心位置,拉十字线,使导向架对角十字线与桩孔中心十字线中心点重合,斜支撑临时固结导向架顶口。

④.调整导向架垂直度,垂直度满足L/1000的要求后,将导向架底座及顶口斜支撑固定。

⑤.调整油缸位置,完成导向架的安装,准备进行钢管桩的下沉。

 

图-3导向架定位安装施工流程图

4.3.6.3钢管桩的制作、运输

㈠、钢管桩的下料长度确定

钢管桩设计桩长为,但桩顶位于水面以下,实际施工中,钢管桩顶面必须位于水面以上。

桩位处平均海平面为0.48~,20年一遇高潮位,因此确定钢管桩顶面标高为+,钢管桩施工桩长为64m。

钢管桩的吊点设计根据实际桩长进行适当调整。

㈡、钢管桩的制作及运输

⑴、钢管桩加工制作

钢管桩由专业厂家加工制作。

⑵、钢管桩运输

①.装船前钢管桩验收

在钢管桩落驳运输前需要对钢管桩的制作质量进行验收,验收的标准按照具体相关标准进行,其中钢管桩的焊缝质量、吊点的位置及焊接质量、钢管桩的桩长及防腐涂层的质量是检验的重点工程。

检验结束后需要收取钢管桩的各类检验证书、合格证等。

对验收合格的钢管桩,将其属性〔桩长、墩号等〕标志于钢管桩的无涂层保护区明显位置。

②.钢管桩落驳装船

A.运桩船进档

一般钢管桩的落驳由设置在落驳码头的双龙门吊进行,运桩船要进入双龙门吊的吊装区域——龙门档。

本工程我公司拟投入自航式运桩船,其自身有动力不需要拖轮拖带,可直接航行进档。

B.钢管桩落驳

钢管桩落驳顺序要求:

本工程钢管桩较少,落驳时按照同一个墩的钢管桩紧挨着放,并且要求按照先中间后两边对称装船的顺序。

钢管桩放置方向的要求:

各桩桩顶、桩尖的朝向一致,不可混放,防止在现场沉桩时需要运桩船调头或打桩船吊钩换位。

应按照图4.3.6-4的要求进行:

图4.3.6-4钢管桩放置方向示意图

C.吊桩落驳

钢管桩的落驳采用双龙门吊,每次起吊1根钢管桩,双龙门吊同时向龙门档前移,将钢管桩吊到运桩船之上,图4.3.6-5、图4.3.6-6为我公司杭州湾工程钢管桩吊桩落驳

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1