线段及差最值问题.docx

上传人:b****5 文档编号:8074929 上传时间:2023-01-28 格式:DOCX 页数:12 大小:160.98KB
下载 相关 举报
线段及差最值问题.docx_第1页
第1页 / 共12页
线段及差最值问题.docx_第2页
第2页 / 共12页
线段及差最值问题.docx_第3页
第3页 / 共12页
线段及差最值问题.docx_第4页
第4页 / 共12页
线段及差最值问题.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

线段及差最值问题.docx

《线段及差最值问题.docx》由会员分享,可在线阅读,更多相关《线段及差最值问题.docx(12页珍藏版)》请在冰豆网上搜索。

线段及差最值问题.docx

线段及差最值问题

专题一.线段和(差)的最值问题

【知识依据】

1.线段公理——两点之间,线段最短;

2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;

3.三角形两边之和大于第三边;

4.三角形两边之差小于第三边;

5、垂直线段最短。

一、已知两个定点:

1、在一条直线m上,求一点P,使PA+PB最小;

(1)点A、B在直线m两侧:

(2)点A、B在直线同侧:

A、A’是关于直线m的对称点。

2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

(1)两个点都在直线外侧:

(2)一个点在内侧,一个点在外侧:

 

(3)两个点都在内侧:

(4)、台球两次碰壁模型

变式一:

已知点A、B位于直线m,n的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.

 

变式二:

已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.

二、一个动点,一个定点:

(一)动点在直线上运动:

点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)

1、两点在直线两侧:

 

2、两点在直线同侧:

(二)动点在圆上运动:

点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)

1、点与圆在直线两侧:

2、点与圆在直线同侧:

三、已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。

(原理用平移知识解)

(1)点A、B在直线m两侧:

过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左移动PQ长,即为P点,此时P、Q即为所求的点。

(2)点A、B在直线m同侧:

四、求两线段差的最大值问题(运用三角形两边之差小于第三边)

1、在一条直线m上,求一点P,使PA与PB的差最大;

(1)点A、B在直线m同侧:

(2)点A、B在直线m异侧:

过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’

Ⅰ.专题精讲

最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:

(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.

(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.

Ⅱ.典型例题剖析

一.归入“两点之间的连线中,线段最短”

Ⅰ.“饮马”几何模型:

条件:

如下左图,A、B是直线l同旁的两个定点.

问题:

在直线l上确定一点P,使PA+PB的值最小.

模型应用:

1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.

2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.

3.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.

4.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.

5.如图,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为             .

6.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为             .

7.已知A(-2,3),B(3,1),P点在x轴上,若PA+PB长度最小,则最小值为            .若PA—PB长度最大,则最大值为            .

8.已知:

如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).

(1)求抛物线的解析式;

(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?

并求出所有点P的坐标;

(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?

若存在,求出点M的坐标;若不存在,请说明理由.

Ⅱ.台球两次碰壁模型

已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点,使PA+PQ+QA周长最短.

变式:

已知点A、B位于直线m,n的内侧,在直线m、n分别上求点D、E点,使得围成的四边形ADEB周长最短.

模型应用:

1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

2.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)

设M,N分别为x轴和y轴上的动点,请问:

是否存在这样的点M(m,0),N(0,n),使四边形ABMN的周长最短?

若存在,请求出m=______,n=______(不必写解答过程);若不存在,请说明理由.

中考赏析:

1.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图

(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图

(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB.

(1)求S1、S2,并比较它们的大小;

(2)请你说明S2=PA+PB的值为最小;

(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.

 

2.如图,抛物线y=

x2-

x+3和y轴的交点为A,M为OA的中点,若有一动点P,自M点处出发,沿直线运动到x轴上的某点(设为点E),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F的坐标,并求出这个最短路程的长.

 

 

Ⅲ.已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小.(原理用平移知识解)

(1)点A、B在直线m两侧:

(2)点A、B在直线m同侧:

模型应用:

1.如图,抛物线y=-

x2-x+2的顶点为A,与y轴交于点B.

(1)求点A、点B的坐标;

(2)若点P是x轴上任意一点,求证:

PA-PB≤AB;

(3)当PA-PB最大时,求点P的坐标.

 

2.如图,已知直线y=

x+1与y轴交于点A,与x轴交于点D,

抛物线y=

x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).

(1)求该抛物线的解析式;

(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

 

3.如图,直线y=-

x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B和点O,直线BC交⊙A于点D.

(1)求点D的坐标;

(2)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?

若存在,请求出这个最大值和点P的坐标.若不存在,请说明理由.

 

4.已知:

如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.

(1)试直接写出点D的坐标;

(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;

(3)试问在

(2)抛物线的对称轴上是否存在一点T,使得

的值最大?

若存在,则求出点T点的坐标;若不存在,则说明理由.

 

1.归入“三角形两边之差小于第三边”

1.直线2x-y-4=0上有一点P,它与两定点A(4,-1)、B(3,4)的距离之差最大,则P点的坐标是.

2.已知A、B两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P)在x轴上行驶.试确定下列情况下汽车(点P)的位置:

(1)求直线AB的解析式,且确定汽车行驶到什么点时到A、B两村距离之差最大?

(2)汽车行驶到什么点时,到A、B两村距离相等?

好题赏析:

原型:

已知:

P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

例题:

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意

一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

(1)求证:

△AMB≌△ENB;

(2)①当M点在何处时,AM+CM的值最小;

②当M点在何处时,AM+BM+CM的值最小,并说明理由;

(3)当AM+BM+CM的最小值为

+1时,求正方形的边长.

 

变式:

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是(  )

①若菱形ABCD的边长为1,则AM+CM的最小值1;

②△AMB≌△ENB;

③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;

⑤当AM+BM+CM的最小值为2

时,菱形ABCD的边长为2.

A.①②③B.②④⑤C.①②⑤D.②③⑤

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1