嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx

上传人:b****6 文档编号:7954965 上传时间:2023-01-27 格式:DOCX 页数:5 大小:19.92KB
下载 相关 举报
嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx_第1页
第1页 / 共5页
嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx_第2页
第2页 / 共5页
嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx_第3页
第3页 / 共5页
嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx_第4页
第4页 / 共5页
嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx

《嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx》由会员分享,可在线阅读,更多相关《嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx(5页珍藏版)》请在冰豆网上搜索。

嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响.docx

嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响

嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响

  摘要:

通过营养液栽培黄瓜,研究铜(Cu)胁迫下黄瓜幼苗生长和光合特性的影响。

结果表明,黄瓜幼苗的生长受到Cu胁迫抑制,黄瓜幼苗地下部与地上部干质量显著下降,嫁接可以显著降低Cu胁迫对黄瓜幼苗的抑制作用。

在Cu胁迫下,嫁接苗叶片中叶绿素含量、类胡萝卜素含量、气孔导度(Gs)均显著高于自根苗,因而具有较高的净光合速率(Pn)。

Cu胁迫处理使Pn和Gs显著下降,而Ci无显著变化,Cu胁迫下Pn下降是由非气孔因素引起的。

表明嫁接可以提高Cu胁迫下黄瓜幼苗叶绿素、类胡萝卜素含量,提高黄瓜幼苗的光合速率,从而提高黄瓜幼苗抗铜胁迫能力。

  关键词:

嫁接;铜胁迫;砧木;光合速率

  中图分类号:

S642.201

  文献标志码:

A

  文章编号:

1002-1302(2016)04-0201-03

  铜(Cu)是植物生长发育所必需的微量营养元素,过量Cu会干扰细胞代谢和离子平衡,对植物产生毒害作用[1]。

铜矿开采、污水灌溉、含Cu杀菌剂、农药和化肥的施用使农田土壤中含Cu量逐年升高,对植物和土壤微生物产生毒害,严重威胁着农产品的产量和质量安全[2]。

  蔬菜嫁接技术是随着保护地蔬菜栽培的发展而兴起的一项新技术,具有增强作物的抗逆性[3-4]、提高吸收能力[5-6]、增加内源激素的合成量、降低污染物的吸收[7]、提高作物的抗盐能力[8]和水分利用效率[9]及产量[10]等优点。

近年来,关于Cu胁迫在番茄、辣椒、甜瓜、萝卜[11-14]等蔬菜上研究已见报道,Cu胁迫对黄瓜等效应研究鲜见报道。

黄瓜是对Cu敏感的一类作物,然而有些种类对Cu有很高的耐性和富集性,因此可以利用嫁接技术,将作物嫁接到耐Cu性强的砧木上,以减轻Cu胁迫对黄瓜作物地上部的伤害。

本试验以新土佐南瓜作砧木嫁接黄瓜,通过营养液栽培探究铜胁迫对黄瓜幼苗生长和光合特性的影响,研究砧木嫁接对黄瓜幼苗耐铜胁迫能力的影响。

  1材料与方法

  1.1试验设计

  试验用南瓜砧木新土佐于2014年8月10日播种,接穗黄瓜津优39于8月12日播种。

常规管理,8月21日嫁接。

待黄瓜接穗生长至3叶1心时(9月9日),选取生长整齐健壮的黄瓜幼苗定植至栽培槽中,栽培槽规格为:

长5m、宽0.4m、高0.1m,内有营养液150L,按照株距20cm、行距25cm定植2行。

营养液配方为大量元素[15]和微量元素,pH值保持在5.5~6.5,定植缓苗2d后开始处理。

试验设4个处理,分别为自根苗(U0)、自根苗+Cu(U40)、嫁接苗(G0)、嫁接苗+Cu(G40),Cu浓度为40μmol/L,用CuSO4?

5H2O调节。

试验设3次重复,12个处理,每个处理40株,胁迫处理7d,第4天更换1次营养液。

  1.2测定方法

  Cu胁迫后7d后从上往下选取黄瓜植株第2张平展叶测叶绿素、类胡萝卜素含量、电解质渗漏率和光合参数。

叶绿素、胡萝卜素含量采用分光光度法测定[16];采用美国LI-COR公司生产的LI-6400光合仪测定净光合速率(Pn)、气孔导度(Gs)和胞间CO2浓度(Ci),测定条件需要室内光源强度、CO2浓度分别为600μmol/(m2?

s)、370μmol/mol,温度为25℃。

  1.3数据统计

  用SAS软件Duncans多重比较法进行统计分析。

  2结果与分析

  2.1嫁接对Cu胁迫下黄瓜幼苗生长的效应

  处理7d后,测定黄瓜植株地上部、地下部干质量(图1)。

在正常生长条件下,嫁接苗与自根苗地上部干质量与地下部干质量均无显著差异。

Cu胁迫显著影响黄瓜植株的生长,处理7d后,U40处理较U0处理地上部、地下部干质量分别下降了25.23%、32.35%,而G40处理较G0处理分别下降了13.39%、19.44%,结果表明,嫁接可以显著缓解Cu胁迫对黄瓜植株的抑制作用。

  2.2嫁接对Cu胁迫下黄瓜幼苗光合色素的影响

  Cu胁迫处理显著降低黄瓜幼苗叶片叶绿素含量,自根苗叶绿素含量下降了41.77%,嫁接苗叶绿素含量仅下降23.86%,表明嫁接苗叶片叶绿素含量受Cu胁迫影响较小,抵御Cu胁迫的能力较强。

无论是在Cu胁迫还是正常条件下,嫁接苗的叶片叶绿素含量均显著高于自根苗,嫁接苗在正常生长条件下比自根苗高11.39%,而在Cu胁迫条件下高45.65%(图2-a)。

  从图2-b可以看出,嫁接苗叶片类胡萝卜素含量在正常生长条件下和Cu胁迫条件下均显著高于自根苗,分别比自根苗高9.38%、31.82%;在Cu胁迫条件下,黄瓜幼苗叶片类胡萝卜素含量显著降低,自根苗类胡萝卜素含量下降了31.25%,而嫁接苗类胡萝卜素仅下降了17.14%。

  2.3嫁接对Cu胁迫下黄瓜幼苗净光合速率的影响

  Cu胁迫显著抑制黄瓜幼苗叶片的Pn。

从图3可以看出,与正常生长相比,Cu处理自根黄瓜叶片Pn降低了23.88%,而嫁接黄瓜叶片Pn下降了10.52%。

嫁接苗在正常生长条件下和Cu胁迫下Pn分别比自根苗高8.53%、26.90%,嫁接苗在Cu胁迫下维持较高的Pn保证了光合产物的供给,提高了黄瓜耐Cu性。

  2.4嫁接对Cu胁迫下黄瓜幼苗气孔导度和胞间CO2浓度的影响

  在正常生长条件下,嫁接苗和自根苗叶片气孔导度无显著差异,而在Cu胁迫条件下,嫁接苗的气孔导度显著高于自根苗,气孔导度比自根苗高25.0%;Cu胁迫使黄瓜幼苗叶片气孔导度显著降低,自根苗、嫁接苗分别下降了36.0%、200%(图4-a)。

  无论在正常生长条件下还是在Cu胁迫条件下,嫁接苗叶片胞间CO2浓度与自根苗均无显著差异(图4-b)。

Cu处理下黄瓜幼苗叶片胞间CO2浓度与正常生长条件下差异不显著,自根苗、嫁接苗分别仅下降了2.99%、3.48%。

  3讨论与结论

  植物生长受抑制是重金属毒害作用的明显特征[17]。

Cu胁迫在植物上的主要体现就是生长量的变化,特别表现在生长受抑制、生物量积累下降[18-19]。

本试验中,Cu胁迫显著降低了嫁接和自根苗地上部和根系的生长量。

在Cu胁迫下,嫁接苗的生物量显著高于自根苗,表明嫁接苗比自根苗具有更高耐Cu胁迫能力。

  植物生产力的主要因素就是光合作用,叶绿素是植物进行光合作用的重要色素,其含量高低与光合强弱密切联系。

过量的Cu抑制植物的光合作用和光合色素的合成[20]。

类胡萝卜素主要功能是进行光合作用、清除自由基和活性氧、延缓植株衰老[21]。

本试验中,Cu胁迫处理黄瓜幼苗的叶绿素和类胡萝卜素含量显著下降,原因是Cu进入植物体内使叶绿体酶活性比例失调,致使叶绿素分解加快[22];同时,过量的Cu降低了叶片、叶绿体、质体中Fe、Mg的含量,低Fe含量影响叶绿素的合成和叶绿体的结构[23];此外,与叶绿体中蛋白质上的巯基结合,或取代其中的Fe2+、Zn2+、Mg2+,使叶绿素蛋白中心离子组成发生变化而导致叶绿素的合成下降[24]。

本研究中嫁接苗叶片中叶绿素、类胡萝卜素含量明显高于自根苗,表明嫁接苗所受的Cu胁迫伤害程度轻,嫁接减轻了Cu胁迫对黄瓜幼苗的胁迫效应。

  叶片光合速率的降低由气孔、非气孔2个因素引起,判定依据主要是Ci、Gs的变化方向。

本研究表明,Cu胁迫下Pn、Gs显著下降,而Ci无显著变化,表明Cu胁迫下Pn下降是由非气孔因素引起的,与前人的研究结论[18]一致。

本试验中虽然在Cu胁迫下,嫁接和自根苗叶片中Ci无显著差异,然而嫁接苗的Pn、Gs显著高于自根苗,表明自根苗受到更为严重的非气孔限制因素的影响,嫁接可以提高Cu胁迫下植株的光合速率,本结果与前人研究结论[25]一致。

  利用新土佐南瓜砧木嫁接可以提高Cu胁迫下黄瓜幼苗光合色素含量,进而提高黄瓜幼苗的光合速率,从而提高黄瓜幼苗抗铜胁迫能力。

  参考文献:

  [1]潘瑞炽.植物生理学[M].6版.北京:

高等教育出版社,2008.

  [2]宋婕.黄瓜根尖边缘细胞对铜胁迫的响应机制研究[D].杭州:

浙江大学,2014.

  [3]李瑶.嫁接提高甜瓜耐低温生理机制的研究[D].长春:

吉林大学,2014.

  [4]王水霞,崔世茂,付崇毅,等.高温逆境下嫁接辣椒耐热性的研究[J].华北农学报,2012,27

(1):

155-158.

  [5]袁亭亭,宋小艺,王忠宾,等.嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响[J].植物营养与肥料学报,2011,17

(1):

131-136.

  [6]赵娟,沈佳,程春燕,等.嫁接对黄瓜光合特性及矿质元素吸收的影响[J].中国瓜菜,2014,27(4):

10-13.

  [7]OtaniT,SeikeN.Comparativeeffectsofrootstockandscionondieldrinandendrinuptakebygraftedcucumber(Cucumissativus)[J].JournalofPesticideScience,2006,31(3):

316-321.

  [8]吴雪霞,查丁石,朱宗文,等.嫁接提高植物耐盐性研究进展[J].中国农学通报,2011,27

(2):

75-78.

  [9]CohenS,NaorA.Theeffectofthreerootstocksonwateruse,canopyconductanceandhydraulicparametersofappletreesandpredictingcanopyfromhydraulicconductance[J].PlantCellandEnvironment,2002,25

(1):

17-28.

  [10]RuizJM,RomeroL.Nitrogenefficiencyandmetabolismingraftedmelonplants[J].ScientiaHorticulturae,1999,81

(2):

113-123.

  [11]李晓云,王秀峰,吕乐福,等.外源NO对铜胁迫下番茄幼苗根系抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2013,24(4):

1023-1030.

  [12]盛积贵,李晓梅,窦三丰.铜胁迫对辣椒种子发芽及其幼苗生长的影响[J].北方园艺,2013(7):

22-24.

  [13]谭明明,张新英,付秋实,等.嫁接对铜胁迫下甜瓜幼苗生理特性的影响[J].应用生态学报,2014,25(12):

3563-3572.

  [14]韩春梅.铜胁迫对萝卜幼苗根系生理生化指标的影响[J].江苏农业科学,2010

(1):

179-180.

  [15]RouphaelY,CardarelliM,ReaE,etal.Graftingofcucumberasameanstominimizecoppertoxicity[J].EnvironmentalandExperimentalBotany,2008,63(1/2/3):

49-58.

  [16]李玲.植物生理学模块实验指导[M].北京:

科学出版社,2009.

  [17]GroppaMD,ZawoznikMS,TomaroML,etal.Inhibitionofrootgrowthandpolyaminemetabolisminsunflower(Helianthusannuus)seedlingsundercadmiumandcopperstress[J].BiologicalTraceElementResearch,2008,126(1/2/3):

246-256.

  [18]王丽娜.外源NO对铜胁迫下番茄幼苗生理生化特性的影响[D].泰安:

山东农业大学,2010.

  [19]邵兴华,张建忠,林国卫,等.铜胁迫对油麦菜生长和土壤酶活性的影响[J].中国农学通报,2010,26(4):

157-161.

  [20]FernandesJC,HenriquesFS.Biochemical,physiological,andstructuraleffectsofexcesscopperinplants[J].TheBotanicalReview,1991,57(3):

246-273.

  [21]张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报,2004,30(4):

455-459.

  [22]ParasadM,HagemeyerJ.Heavymetalstressinplants:

frommoleculerstoecosystems[M].Berlin:

Springer,1999:

117-138.

  [23]林义章,张淑媛,朱海生.铜胁迫对小白菜叶肉细胞超微结构的影响[J].中国生态农业学报,2008,16(4):

948-951.

  [24]李永杰,李吉跃,方晓娟,等.铜胁迫对白蜡幼苗叶绿素含量及光合特性影响[J].东北林业大学学报,2010,38(6):

35-37.

  [25]谭明明,贺忠群,郑万刚.嫁接对铜胁迫下甜瓜幼苗光合特性与矿质元素吸收的影响[J].华北农学报,2014,29(5):

186-192.王彩霞,张文,卢丽兰,等.硒锌交互对蕹菜矿质营养的影响[J].江苏农业科学,2016,44(4):

204-206.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1