探测器原理大全.docx

上传人:b****6 文档编号:7933276 上传时间:2023-01-27 格式:DOCX 页数:21 大小:184.42KB
下载 相关 举报
探测器原理大全.docx_第1页
第1页 / 共21页
探测器原理大全.docx_第2页
第2页 / 共21页
探测器原理大全.docx_第3页
第3页 / 共21页
探测器原理大全.docx_第4页
第4页 / 共21页
探测器原理大全.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

探测器原理大全.docx

《探测器原理大全.docx》由会员分享,可在线阅读,更多相关《探测器原理大全.docx(21页珍藏版)》请在冰豆网上搜索。

探测器原理大全.docx

探测器原理大全

入侵报警探测器

入侵报警探测器用来探测入侵者的入侵行为。

需要防范入侵的地方可以是某些特定的部位,如门、窗、柜台、展览厅的展柜;或是条线,如边防线、警戒线、边界线;有时要求防范范围是个面,如仓库、重要建筑物的周界围网(铁丝网或围本墙);有时又要求防范的是个空间,如档案室、资料室、武器室、珍贵物品的展厅等,它不允许入侵者进入其空间的任何地方。

因此入侵报警系统在设计时就应根据被防范场所的不同地理特征、外部环境及警戒要求选用合适的探测器以达到安全防范的目的。

入侵探测器应有防拆、防破坏等保护功能。

当入侵者企图拆开外壳或信号传输线断路、短路或接其它负载时,探测器应能发出报警信号。

入侵探测器还要有较强的抗干扰能力。

在探测范围内,任何小动物或长150mm、直径为30mm具有与小动物类似的红外幅射特性的圆筒大小物体都不应使探测器产生报警;探测器对于与射束轴线成15°或更大一点的任何界外光源的幅射干扰信号应不产生误报;探测器应能承受常温气流和电铃的干扰;应能承受电火花的干扰。

2.2.1传感器

传感器是入侵探测器的核心,它是一种物理量转换器件,可以将入侵时所产生的力、压力、位移、振动、温度、声音、光强等物理量转化为易于处理的电信号和电参量,如电压、电流、电阻、电容等。

这种转换是按照一定的规律进行的。

被探测的信号我们称之为输入信号x,转换后的电信号称之为输出信号y,那么有y=f(x),f称之为转换函数。

转换函数则反映了一定的转换规律。

对传感器来说输入信号除了被探测的入侵行为所产生的物理信号外,还包括有干扰所产生的气压、温度、振动、噪声等干扰信号,因此实际上转换函数应是一多元函数,但好的传感器会使干扰对输出的影响被忽略。

传感器的输出电信号有两种,一种是连续变化的信号,我们称之为模拟量。

如光电二极管输出的电流随光照强度大小而变化就是一种连续变化的物理量。

但报警控制器通常只接收入侵行为是否发生的有无信号来决定相应的防范措施。

这就需要将连续变化的模拟信号转换成只有“有”和“无”两种状态的数字量,通常用“1”表示“有”,用“0”表示“无”。

这种转换可以在探测器中完成,也可以在报警控制器中完成。

通常是将传感器探测到的模拟信号与一予先确定的基准信号相比较,小于基准信号可认为该信号为干扰引入而非入侵信号,判定为“0”,超过基准值时的信号则只能在入侵行为发生时产生,判定为“1”。

也有少数的传感器产生并输出的信号只有两种状态,如干簧继电器的“通”与“断”,已经是数字信号而不需转换和比较,可直接被控制器接收。

1.开关传感器

开关传感器是一种简单、可靠的传感器,也是一种最廉价的传感器,广泛应用于安防技术中。

它可以将压力、磁场或位移等在入侵行为发生时所产生的物理量转化为传感器内部电路的“开”和“关”两种电信号。

(1)微动开关、簧片型接触开关

开关在压力的作用下接通,从而发出报警信号;在无压力作用时是断开的;或者反过来工作。

此类开关通常用在某些点探测器中,用以监视门、窗、柜台等特殊部位。

(2)舌簧继电器

舌簧继电器又称干簧继电器,是一种将磁场力转化为电信号的传感器,其结构如图2-2。

图2-2干簧继电器的构造

干簧管的干簧触点常做成常开、常闭或转换三种不同形式。

开关簧片通常烧结在与簧片热膨胀系数相近的玻璃管上,管内充有氮气或惰性气体以避免触点被氧化和腐蚀,还可以有效防止空气中尘埃与水气污染。

干簧管中的簧片是用铁镍合金制成,具有很好的导磁性能,与线圈或磁块配合,构成了干簧继电器状态的变换控制器,簧片上的触点镀金、银、铑等贵金属,以保证通断能力。

常开舌簧继电器的两个簧片在外磁场作用下其自由端产生的磁极极性正好相反,二触点相互吸合,外磁场不作用时触点是断开的,故称常开式舌簧继电器。

常闭舌簧管的结构正好与常开式相反,是无磁场作用时吸合,有磁场作用时断开。

转换式舌簧继电器有常开、常闭两对触点,在外磁场作用下状态发生转换。

使用时通常把磁铁安装在被防范物体(如门、窗等)的活动部位(门扇、窗扇),干簧管安装在固定部位(门框、窗框),如图2-3所示。

图2-3安装在门窗上的磁控开关

磁铁与舌簧管的位置要调整适当,以保征门窗关闭时磁铁与干簧管接近而干簧管触点动作,当门窗打开时干簧管触点复位而产生报警信号。

(3)易断金属导线

易断金属线是一种用导电性能好的金属材料制成的机械强度不高、容易断裂的导线,用它作为传感器时,可将其捆绕在门、窗把手或被保护的物体上,当门、窗被强行打开或物体被意外移动时金属线断裂,使与其连通的电路断路而发出报警信号。

易断金属导线可以是0.1mm~0.5mm的漆包线,也可以采用一种导电胶粘带。

易断金属导线具有结构简单、价格低廉的优点,缺点是不便于伪装且没有自恢复功能。

(4)压力垫

压力垫也可以作为开关报警探测器的一种传感器。

压力垫通常放在防范区域的地毯下面,如图2-4所示。

将两长条形金属带平行相对地分别放在地毯背面和地板之间,两条金属带之间有几个位置使用绝缘材料支撑,使两条金属带互不接触,此时相当与传感器开关断开,当入侵者进入防范区域时,踩踏地毯而使相应部位受力凹陷,两条金属带接触,此时相当于传感器开关闭合而发出报警信号。

图2-4压力垫使用示意图

2.压力传感器

压力传感器把传感器上受到的压力变化转换为相应的电量变化,经过放大成为电信号。

某些晶体材料,当某方向受到外力作用时,其内部就会产生极化现象,在某方向两个表面上产生正负电荷,当作用力改变时,电荷的大小和极性随之改变,晶体所产生的电荷量大小和极性随之改变,晶体所产生的电荷量大小与外力的大小成正比,这种现象称正压电效应。

反之某些晶体加一交变电场,晶体将产生机械变形,这种现象称逆压电效应。

图2-5为压电效应原理示意图。

图2-5压电效应原理示意图

具有压电效应的晶体材料我们称之为压电材料。

压力传感器就是利用压电材料的正压电效应制成。

现在常用的压电材料是人工合成的。

天然的压电单晶也有,但效率低,利用难度较大,用的较少,只有在高温或低温等特殊状态下,才利用单晶石英晶体。

压电陶瓷是人工烧结的一种常用多晶压电材料,压电陶瓷烧结方便,容易成形,强度高,而且压/电转换的系数大,为天然单晶石英晶体的几十倍,而制造成本只有石英单晶的百分之一,因此压电陶瓷广泛被用做高效压力传感器材料。

常用的压电陶瓷材料有钛酸钡、铌镁酸铅,铅钛酸铅等。

压电陶瓷材料烧结后,最初并不具有压力特性。

这种陶瓷材料内部有许多无序排列的“电畴”,这些“电畴”在一定外界温度下,接受一强化电场的作用,使其按外电场的方向整齐排列,这就是极化过程。

极化后的陶瓷材料在撤去外电场后,其内部电畴的排列不变,具有很强的极化排列,这时陶瓷材料才具有压电性。

压电陶瓷材料通常做成长方体。

当某一方向上的对应两面受到外力作用时,在压电陶瓷的这两面上就会出现电荷堆积,电量的大小与受力的大小成正比。

此时压电陶瓷相当于一个静电发生器,或是一个以压电材料为介质的电容器,电容量的大小为

C=ε·ε0·A/δ

式中,

ε0——真空介电常数(8.85×10-12F/m);

ε——压电材料相对介电常数;

A——受力极板面积;

δ——压电材料厚度。

而电容两端的开路电压U=Q/C,Q为极板上电荷量的大小,与所受外力成正比,一般电量Q很小,因此感应出的U也很小。

为了能检测出U的变化,要求压电陶瓷本身有相应的阻抗,同时前端放大器也应有极高的输入阻抗,通常探测器的前端放大器用场效应管来担当。

由于输入阻抗过高,很容易窜入干扰信号,为此前端放大器应直接接在传感器的输出端,信号经放大后输出一个高电平、低阻抗的探测电信号。

有机压电材料是新近研究开发出来的新型压电材料,如聚氯乙烯、聚二氟乙烯等,它具有柔软、不易破碎的特点。

半导体压力传感器是利用硅结晶的压电电阻效应以及二极管、晶体管的电流、电压特性制成的元件。

当硅半导体材料受到外力作用时,晶体处于扭曲状态,由于载流子迁移率的变化而导致晶体阻抗变化的现象称之为压电电阻效应。

用ΔR表示晶体阻抗的变化,它的变化率为:

ΔR/R=(Δρ/ρ)·τ·σ=G·σ

式中,

τ——压电电阻系数

ρ——电阻率

σ——应力

G——比例因子

半导体压力传感器的比例因子G高达200,G越高,灵敏度越高。

图2-6所示为半导体压力传感器结构。

当硅膜片受压时,扩散电阻值发生变化,将R1、R2、R3、R4接成桥路,如图2-7所示。

图2-6半导体压力传感器结构图2-7压力传感器输入输出桥

图2-8为半导体压力传感器的压电传输特性,可以看出输出电压随压力的变化而变化,且线性度较好。

图2-8压电传输特性

用来检测压力的传感器还有静电容式压力传感器和硅振动式压力传感器。

静电容式压力传感器是将压力膜微小的位置变化转换成静电容变化的传感器。

硅振动式压力传感器是用微加工方法将膜片加工成长50µm、宽20µm~30µm、厚5µm的硅振子膜片,当膜片受到压力时,则把压力转换为张力,使膜片产生振动。

但为使振子不直接与测量膜片接触,防止振子的污染和劣化,而将其全部封在真空室内,故硅振动式压力传感器的工作条件要求极高,在这里就不详述了。

3.声传感器

入侵事件发生时,总会有说话、走动、击碎玻璃、锯钢筋等声音发生,能够把这些声音信号转换成一定电量的传感器都称为声传感器。

声音为一种机械波,声音的传播是机械波在媒质中传播的过程。

当声波频率在20Hz~20kHz时人耳能接收到,称为可闻声波。

当频率低于20Hz时称为次声波,高于20kHz时称为超声波,次声波和超声波人耳均听不到。

(1)驻极体传感器

驻极体是一种永久性带电的介电材料,它能把声能或机械能转换成电能,或者将电能转换成机械能或声能。

驻极体传感器的核心是驻极体箔。

它由一张绝缘薄膜组成,薄膜上带电荷,通常由聚四氟乙烯等碳卤聚合物制成,具有极高的绝缘电阻。

通过外电场对绝缘薄膜两侧充电,则膜上的电荷能长时间保存。

若在常温和相对干燥的环境下保存,聚四氟乙烯上的电荷能保存近百年;在常温和相对湿度为95%的潮湿环境下,电荷的衰减时间也能达到近10年。

通常把一片驻极体膜紧贴在一块金属板上,另一片驻极体膜相对安放,中间为10µm的薄空气层,构成一个驻极体传感器。

二片相对而立的驻极体膜形成一个电容器,根据静电感应原理,与驻极体相对应的金属板上会感应出大小相等、方向相反的电荷。

驻极体上的电极在空隙中形成静电场,在声波作用下,驻极体箔会有一个位移d。

在驻极体膜开路的条件下,膜片两端感应的静电场

U=E·d=σd1d/ε0(d1+εd2)

式中,E——膜片间隙中电场强度

σ——驻极体表面电荷密度

d1——驻极体箔的厚度

d2——膜间空气厚度

εO——自由空间介电常数

ε——驻极体材料的相对介电常数

驻极体箔的相对位移d与所加声强成正比,因此传感器输出的电压仅与声强有关,而与频率无关。

驻极体传感器能保证在声频范围内具有恒定的灵敏度,这是极大的优点。

(2)磁电传感器

磁电式传感器俗称“动圈式传感器”,它是由一个固定磁场和在这磁场中可作垂直轴向运动的线圈组成,线圈安装在一个振动膜上,振动膜在声强的作用下运动,带动线圈在固定的磁场中作切割磁力线的运动,此时在线圈两端的感应电动势E的大小为:

E=BLv,

式中,

B——磁感应强度

L——线圈的长度

v——线圈的运动速度

线圈的运动速度v与声强的大小有关,故而线圈的输出电压也取决于声强的大小。

4.光电传感器

光电传感器是指能够将可见光转换成某种电量的传感器。

光敏二极管是最常见的光传感器。

光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大,光敏二极管工作在反向偏置的工作状态下,并与负载电阻相串联,当无光照时,它与普通二极管一样,反向电流很小(<µA),称为光敏二极管的暗电流;当有光照时,载流子被激发,产生电子-空穴,称为光电载流子。

在外电场的作用下,光电载流子参于导电,形成比暗电流大得多的反向电流,该反向电流称为光电流。

光电流的大小与光照强度成正比,于是在负载电阻上就能得到随光照强度变化而变化的电信号。

光敏三极管除了具有光敏二极管能将光信号转换成电信号的功能外,还有对电信号放大的功能。

光敏三级管的外型与一般三极管相差不大,一般光敏三极管只引出两个极——发射极和集电极,基极不引出,管壳同样开窗口,以便光线射入。

为增大光照,基区面积做得很大,发射区较小,入射光主要被基区吸收。

工作时集电结反偏,发射结正偏。

在无光照时管子流过的电流为暗电流Iceo=(1+β)Icbo(很小),比一般三极管的穿透电流还小;当有光照时,激发大量的电子-空穴对,使得基极产生的电流Ib增大,此刻流过管子的电流称为光电流,集电极电流Ic=(1+β)Ib,可见光电三极管要比光电二极管具有更高的灵敏度。

5.热电传感器

热电传感器是一种将热量变化转换为电量变化的一种能量转换器件。

热释电红外线元件是一种典型的热量传感器。

可见光的波长通常在1µm以上,而1µm以下的光人眼是看不到的。

0.8µm以下的红外光具有很高的放射能量(W/m2),差不多等于800K(500℃)以上高温物体释放的能量,因此常用红外光发射能量来检测入侵者的入侵及其活动。

一般的热释电材料为LiTaO3,当受到红外线照射时,热释电材料的温度发生变化,同时其表面电荷也会发生变化。

当以LiTaO3为代表的热释电材料处于自极化状态时,吸收红外线入射波后,结晶的表面温度改变,自极化也发生改变,结晶表面的电荷变得不平衡,把这种不平衡电荷的电压变化取出来,便可测出红外线。

热释电材料只有在温度变化时才产生电压,如果红外线一直照射,则没有不平衡电压,一旦无红外线照射时,结晶表面电荷就处于不平衡状态,从而输出电压。

热释电红外线传感器因红外光线的照射与遮挡得到或失去热量,从而产生电压输出。

从原理上讲应与波长无关,但由热释电材料做成的传感器有一个透光窗,而透光窗的选材与波长有关系。

如以SiO2为窗材的传感器,它与1µm以上波长的红外线无关,而有的窗材只能通过4µm附近波长的光,有的能透过6.1µm波长的光,有的能透过8µm~14µm波长的光,所以使用不同的窗材就可确认是哪个波长的光产生的热。

热释电元件组成的红外探测器只与窗材的波长有关,而量子型的红外光探测器与红外光的波长有关,它的特点是灵敏度高,响应速度快,响应的灵敏度与红外线波长有关。

每个入射光子产生的能量

E=hc/λ=1124λ

式中,h——普朗克常数,h=4.14×10-15(ev·s)=6.625×10-34(J·S)

c——光速,c=3×1010cm/s

1µm红外光的能量为1.24eV,10µm红外光的能量为0.12eV,与可见光相比,红外线光的能量较小。

量子型的红外传感器又分为光导电型和光电动势型两种。

光导电型的元件材料有PbS、PbSe、Hg、Cd、Te等,它是利用红外线照射时阻抗减少的特点来获取检测信号的;而光电动势型是在Ge、IrSb等半导体基片上形成PN结,当红外线照射时产生光电动势,Ge的禁带宽度为0.6ev,Ge二极管对0.6µm和1.9µm的红外光较敏感,当入射红外光的波长在0.6µm~1.9µm时,在PN结上形成的电动势随入射光量的增大而增大,从而经放大可输出探测电信号。

6.电磁感应传感器

电磁场也是物质存在的一种形式。

电磁场的运动规律由麦克斯韦方程组来表示,根据麦克斯韦理论,当入侵者入侵防范区域,使原先防范区域内电磁场的分布发生变化,这种变化可能引起空间电场的变化,电场畸变传感器就是利用此特性。

同时,入侵者的入侵也可能使空间电容发生变化,电容变化传感器就是利用此特性。

2.2.2入侵探测器

入侵探测器是由传感器和信号处理器组成的用来探测入侵者入侵行为的电子和机械部件组成的装置。

入侵探测器的分类可按其所用传感器的特点分为开关型入侵探测器、震动型入侵探测器、声音探测器、超声波入侵探测器、次声入侵探测器、主动与被动红外入侵探测器、微波入侵探测器、激光入侵探测器、视频运动入侵探测器和多种技术复合入侵探测器。

也可按防范警戒区域分为点形入侵探测器、直线型入侵探测器、面型入侵探测器和空间型入侵探测器。

1.点型入侵探测器

对于门窗、柜台、展橱、保险柜等防范范围仅是某一特定部位使用的入侵探测器为点型入侵探测器,点型入侵探测验器通常有开关型和振动型两种。

(1)开关入侵探测器

开关入侵探测器是采用开关型传感器构成的。

可以是微动开关、干簧继电器、易断金属导线或压力垫等构成。

不论是常开型或是常闭型,当其状态改变时均可直接向报警控制器发出报警信号,由报警控制器发出声光警报信号。

(2)震动入侵探测器

当入侵者进入防范区域实施犯罪时,总会引起地面、墙壁、门窗、保险柜等发生震动,我们可以采用压电式传感器、电磁感应传感器或其它可感受振动信号的传感器来感受入侵时发生的振动信号,这种探测器我们称之为振动入侵探测器。

墙震动探测器及玻璃破碎探测器是典型的震动入侵探测器,这种探测器常使用压电式传感器或导电簧片开关传感器。

压电传感器是利用压电材料的压电效应制成的,当压电材料受到某方向的压力时,在一特定方向两个相对电极上分别感应出电荷,电荷量的大小与压力成正比。

我们把压电传感器贴在玻璃上,当玻璃受到震动时,传感器相应的两电极上感应出电荷,形成一微弱的电位差,可以采用高放大倍数高输入阻抗的集成放大电路进行放大产生报警信号。

采用半导体压力传感器的压电电阻效应制成的压电式震动入侵探测器,当半导体材料硅片受外力作用时,晶体处于扭曲状态,载流子的迁移率随之发生变化,从而发生结晶电阻的阻抗发生变化,引起输出电压的变化,此输出电压加到烧结在同一硅片上的集成放大电路而产生报警信号。

导电簧片开关型玻璃破碎探测器结构如图2-9所示,上簧片横向略呈弯曲的形状,它对噪声频率有吸收作用。

绝缘体、定位螺丝将上下金属导电簧片绝缘固定在底座上,而右端触头处可靠接触。

图2-9导电簧片开关型玻璃破碎探测器结构图

玻璃破碎探测器的外壳粘附在需防范的玻璃的内侧。

环境温度和湿度的变化及轻微震动产生的低频振动,甚至敲击玻璃所产生的振动都能被上簧片的弯曲部分吸收,不改变上下电极的接触状态,只有当探测器探测到玻璃破碎或足以使玻璃破碎的强冲击力时产生的特殊频率范围的振动才能使上下簧片振动,处于不断开闭状态,触发控制电路产生报警信号。

近年来随着数字信号处理技术的发展,一种采用微处理器的新型声音分析式玻璃破碎探测器已经出现,它是利用微处理器的声音分析技术来分析与破碎相关的特定声音频率后进行准确的报警。

传感器接收防范范围内的各种声频信号送给微处理器,微处理器对其进行分析和处理以识别出玻璃破碎的入侵信号,这种探测器的误报率极低。

为减少误报率,人们还采用一种超低频检测和音频识别技术的双技术探测器。

如果超低频探测技术探测到玻璃被敲击时所发出的超低频波,而在随后的一段特定时间间隔内,音频识别技术也捕捉到玻璃被击碎后发出的高频声波,那么双技术探测器就会确认发生玻璃破碎,并触发报警。

电动式振动入侵探测器是利用电磁感应传感器将振动转换成线圈两端的感应电动势输出。

将电动式振动入侵传感器与保险柜、贵重物体固定在一起,当入侵者搬动或触动保险柜等物体产生振动,电动传感器随之振动,线圈与电动传感器是固定在一起的,而磁铁是通过弹簧与壳体连接在一起,壳体振动后,磁铁随之运动,在线圈上感应出电动势,其大小E=nBLv,B为磁感应强度,L为每匝线圈的长度,n为绕组匝数,v为物体的振动速度。

输出电压E正比于振动速度,电动传感器具有较高的灵敏度,输出电动势较高,不需要高增益的放大器,而且电动传感器输出阻抗低,噪声干扰小。

2.直线型入侵探测器

直线型入侵探测器是指警戒范围为一条线束的探测器,当在这条警戒线上的警戒状态被破坏时发出报警信号。

最常见的直线型报警探测器为红外入侵探测器、激光入侵探测器。

探测器的发射机发射出一束红外光或激光,经反射或直接射到接收器上,如光束被遮断,则发出报警信号。

(1)红外入侵探测器

物理学告诉我们,电磁场是物质存在的一种形式,电磁场的运动规律是由麦克斯韦方程组来描述的,根据麦克斯韦的电磁场理论,如果在空间的某区域内有变化的电场(或磁场),那么在邻近区域内将引起变化的磁场(或电场),而这变化的磁场或电场又在更远的区域引起新的变化电场或磁场。

这种由近到远,以有限的速度在空间内传播的过程称电磁波。

我们平时所熟悉的光波,无线电波都是不同波长的电磁波。

表2-1列出了不同电磁波的波长范围。

表2-1电磁波的波长划分表

名称

波长范围(μm)

频率范围(MHz)

无线电波

>1×103

<3×105

红外光

0.78~1×103

3×105~3.84×108

可见光

0.39~0.78

3.84×108~7.7×108

紫外光

0.01~0.39

7.7×108~3×1010

X射线

10-5~10-2

3×1010~3×1013

红外光是电磁波,它同样具有向外辐射的能力,它的波长介于无线电波的微波和可见光之间。

物理学告诉我们,凡是温度高于绝对零度的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因而自然界的物体都能向外辐射红外光。

对某种物体来说,由于其本身的物理和化学性质不同,物体本身温度不同,所产生的红外辐射的波长和距离也不同,通常分为三个波段。

近红外:

波长范围0.75µm~3µm

中红外:

波长范围3µm~25µm

远红外:

波长范围25µm~1000µm

红外光在大气中辐射时会产生衰减现象,主要是由于大气中各种气体对辐射的吸收(如水气、二氧化碳)和大气中悬浮微粒(如雨、雾、云、尘埃等微粒)对红外光造成的散射。

大气中红外辐射的衰减是随着波长不同而变化的,对某些波长的红外辐射衰减较少,这些波长区称为红外的“大气窗口”。

能通过大气的红外辐射基本上分为三个波段,1µm~2.5µm;3µm~5µm;8µm~14µm,这三个红外大气窗口为我们使用提供了方便。

红外探测器分为被动红外探测器和主动红外探测器两种形式。

所谓被动红外探测器只有红外线接收器。

当被防范范围内有目标入侵并移动时,将引起该区域内红外辐射的变化,而红外探测器能探测出这种红外辐射的变化并发出报警信号。

实际上除入侵物体发出红外辐射外,被探测范围内的其它物体如室外的建筑物、地形、树木、山和室内的墙壁、课桌、家俱等都会发生热辐射,但因这些物体是固定不变的,其热辐射也是稳定的,当入侵物体进入被监控区域后,稳定不变的热辐射被破坏,产生了一个变化的热辐射,而红外探测器中的红外传感器就能收到这变化的辐射,经放大处理后报警。

在使用中,把探测器放置在所要防范的区域里,那些固定的景物就成为不动的背景,背景辐射的微小信号变化为噪声信号,由于探测器的抗噪能力较强,噪声信号不会引起误报,红外探测器一般用在背景不动或防范区域内无活动物体的场合。

如只考虑红外传感器本身的噪声,在探测距离内,被动红外探测器的作用距离为:

式中,

D0——光学系统通光口径

η——光学系统的传输效率

NA——光学系统数值孔径,NA=D0/2f

ω——目标的辐射强度

τ——大气透过率

D*——传感器的光谱探测度

w——视场角

△f——等效噪声带宽

Vs/Vn——探测器确定的信噪比。

可见要提高作用距离R,应增大通光口径D。

、传输效率η和光谱探测度D*,减少视场角w和等效噪声带宽Δf。

为了提高被动红外入侵探测器的报警精度以及减少误报率,现在实际应用的被动红外探测器,多数做成把几个红外接收单元集成在一个探测器中,称为多元被动红外探测器。

这样的探测器由于具有几个接收单元,则不仅能检测出其防范区域有入侵者时的红外变化,还

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1