环境工程原理第二版课后答案docx.docx

上传人:b****6 文档编号:7792741 上传时间:2023-01-26 格式:DOCX 页数:118 大小:165.69KB
下载 相关 举报
环境工程原理第二版课后答案docx.docx_第1页
第1页 / 共118页
环境工程原理第二版课后答案docx.docx_第2页
第2页 / 共118页
环境工程原理第二版课后答案docx.docx_第3页
第3页 / 共118页
环境工程原理第二版课后答案docx.docx_第4页
第4页 / 共118页
环境工程原理第二版课后答案docx.docx_第5页
第5页 / 共118页
点击查看更多>>
下载资源
资源描述

环境工程原理第二版课后答案docx.docx

《环境工程原理第二版课后答案docx.docx》由会员分享,可在线阅读,更多相关《环境工程原理第二版课后答案docx.docx(118页珍藏版)》请在冰豆网上搜索。

环境工程原理第二版课后答案docx.docx

环境工程原理第二版课后答案docx

第I篇习题解答

第一章绪论

1.1简要概述环境学科的发展历史及其学科体系。

解:

环境学科是随着环境问题的日趋突出而产生的一门新兴的综合性边缘学科。

它经历了20世纪60年代的酝酿阶段,到20世纪70年代初期从零星的环境保护的研究工作与实践逐渐发展成为一门独立的新兴学科。

环境学科是一门正在蓬勃发展的科学,其研究范围和内涵不断扩展,所涉及的学科非常广泛,而且各个学科间又互相交叉和渗透,因此目前有关环境学科的分支学科还没有形成统一的划分方法。

图1-1是环境学科的分科体系。

1-1环境学科体系

1.2简要阐述环境工程学的主要任务及其学科体系。

解:

环境工程学作为环境学科的一个重要分支,主要任务是利用环境学科以及工程学的方法,研究环境污染控制理论、技术、措施和政策,以改善环境质量,保证人类的身体健康和生存以及社会的可持续发展。

图1-2是环境工程学的学科体系。

图1-2环境工程学的学科体系

1.3去除水中的悬浮物,有哪些可能的方法,它们的技术原理是什么?

解:

去除水中悬浮物的方法主要有:

沉淀、离心分离、气浮、过滤(砂滤等)、过滤(筛网过滤)、反渗透、膜分离、蒸发浓缩等。

上述方法对应的技术原理分别为:

重力沉降作用、离心沉降作用、浮力作用、物理阻截作用、物理阻截作用、渗透压、物理截留等、水与污染物的蒸发性差异。

1.4空气中挥发性有机物(VOCs)的去除有哪些可能的技术,它们的技术原理是什么?

解:

去除空气中挥发性有机物(VOCs)的主要技术有:

物理吸收法、化学吸收法、吸附法、催化氧化法、生物法、燃烧法等。

上述方法对应的技术原理分别为:

物理吸收、化学吸收、界面吸附作用、氧化还原反应、生物降解作用、燃烧反应。

1.5简述土壤污染可能带来的危害及其作用途径。

解:

土壤污染的危害及其作用途径主要有以下几个方面:

①通过雨水淋溶作用,可能导致地下水和周围地表水体的污染;②污染土壤通过土壤颗粒物等形式能直接或间接地为人或动物所吸入;③通过植物吸收而进入食物链,对食物链上的生物产生毒害作用等。

1.6环境净化与污染控制技术原理可以分为哪几类?

它们的主要作用原理是什么?

解:

从技术原理上看,环境净化与污染控制技术原理可以分为“隔离技术”、“分离技术”和“转化技术”三大类。

隔离技术是将污染物或者污染介质隔离从而切断污染物向周围环境的扩散,防止污染近一步扩大。

分离技术是利用污染物与污染介质或其它污染物在物理性质或化学性质上的差异使其与介质分离,从而达到污染物去除或回收利用的目的。

转化技术是利用化学或生物反应,使污染物转化成无害物质或易于分离的物质,从而使污染介质得到净化与处理。

1.7《环境工程原理》课程的任务是什么?

解:

该课程的主要任务是系统、深入地阐述环境污染控制工程,即水质净化与水污染控制工程、大气(包括室内空气)污染控制工程、固体废物处理处置与管理和资源化工程、物理性污染(热污染、辐射污染、噪声、振动)控制工程、自然资源的合理利用与保护工程、生态修复与构建工程以及其它污染控制工程中涉及到的具有共性的工程学基础、基本过程和现象以及污染控制装置的基本原理,为相关的专业课程打下良好的理论基础。

第二章质量衡算与能量衡算

2.1某室内空气中O3的浓度是0.08×10-6(体积分数),求:

(1)在1.013×105Pa、25℃下,用μg/m3表示该浓度;

(2)在大气压力为0.83×105Pa和15℃下,O3的物质的量浓度为多少?

解:

理想气体的体积分数与摩尔分数值相等

由题,在所给条件下,1mol空气混合物的体积为

V1=V0·P0T1/P1T0

=22.4L×298K/273K

=24.45L

所以O3浓度可以表示为

0.08×10-6mol×48g/mol×(24.45L)-1=157.05μg/m3

(2)由题,在所给条件下,1mol空气的体积为

V1=V0·P0T1/P1T0

=22.4L×1.013×105Pa×288K/(0.83×105Pa×273K)

=28.82L

所以O3的物质的量浓度为

0.08×10-6mol/28.82L=2.78×10-9mol/L

2.2假设在25℃和1.013×105Pa的条件下,SO2的平均测量浓度为400μg/m3,若允许值为0.14×10-6,问是否符合要求?

解:

由题,在所给条件下,将测量的SO2质量浓度换算成体积分数,即

大于允许浓度,故不符合要求

2.3试将下列物理量换算为SI制单位:

质量:

1.5kgf·s2/m=kg

密度:

13.6g/cm3=kg/m3

压力:

35kgf/cm2=Pa

4.7atm=Pa

670mmHg=Pa

功率:

10马力=kW

比热容:

2Btu/(lb·℉)=J/(kg·K)

3kcal/(kg·℃)=J/(kg·K)

流量:

2.5L/s=m3/h

表面张力:

70dyn/cm=N/m

5kgf/m=N/m

解:

质量:

1.5kgf·s2/m=14.709975kg

密度:

13.6g/cm3=13.6×103kg/m3

压力:

35kg/cm2=3.43245×106Pa

4.7atm=4.762275×105Pa

670mmHg=8.93244×104Pa

功率:

10马力=7.4569kW

比热容:

2Btu/(lb·℉)=8.3736×103J/(kg·K)

3kcal/(kg·℃)=1.25604×104J/(kg·K)

流量:

2.5L/s=9m3/h

表面张力:

70dyn/cm=0.07N/m

5kgf/m=49.03325N/m

2.4密度有时可以表示成温度的线性函数,如

ρ=ρ0+At

式中:

ρ——温度为t时的密度,lb/ft3;

ρ0——温度为t0时的密度,lb/ft3。

t——温度,℉。

如果此方程在因次上是一致的,在国际单位制中A的单位必须是什么?

解:

由题易得,A的单位为kg/(m3·K)

2.5一加热炉用空气(含O20.21,N20.79)燃烧天然气(不含O2与N2)。

分析燃烧所得烟道气,其组成的摩尔分数为CO20.07,H2O0.14,O20.056,N20.734。

求每通入100m3、30℃的空气能产生多少m3烟道气?

烟道气温度为300℃,炉内为常压。

解:

假设燃烧过程为稳态。

烟道气中的成分来自天然气和空气。

取加热炉为衡算系统。

以N2为衡算对象,烟道气中的N2全部来自空气。

设产生烟道气体积为V2。

根据质量衡算方程,有

0.79×P1V1/RT1=0.734×P2V2/RT2

0.79×100m3/303K=0.734×V2/573K

V2=203.54m3

2.6某一段河流上游流量为36000m3/d,河水中污染物的浓度为3.0mg/L。

有一支流流量为10000m3/d,其中污染物浓度为30mg/L。

假设完全混合。

(1)求下游的污染物浓度

(2)求每天有多少kg污染物质通过下游某一监测点。

解:

(1)根据质量衡算方程,下游污染物浓度为

(2)每天通过下游测量点的污染物的质量为

2.7某一湖泊的容积为10×106m3,上游有一未被污染的河流流入该湖泊,流量为50m3/s。

一工厂以5m3/s的流量向湖泊排放污水,其中含有可降解污染物,浓度为100mg/L。

污染物降解反应速率常数为0.25d-1。

假设污染物在湖中充分混合。

求稳态时湖中污染物的浓度。

解:

设稳态时湖中污染物浓度为,则输出的浓度也为

则由质量衡算,得

5×100mg/L-(5+50)m3/s-10×106×0.25×m3/s=0

解之得

=5.96mg/L

2.8某河流的流量为3.0m3/s,有一条流量为0.05m3/s的小溪汇入该河流。

为研究河水与小溪水的混合状况,在溪水中加入示踪剂。

假设仪器检测示踪剂的浓度下限为1.0mg/L。

为了使河水和溪水完全混合后的示踪剂可以检出,溪水中示踪剂的最低浓度是多少?

需加入示踪剂的质量流量是多少?

假设原河水和小溪中不含示踪剂。

解:

设溪水中示踪剂的最低浓度为ρ

则根据质量衡算方程,有

0.05ρ=(3+0.05)×1.0

解之得

ρ=61mg/L

加入示踪剂的质量流量为

61×0.05g/s=3.05g/s

2.9假设某一城市上方的空气为一长宽均为100km、高为1.0km的空箱模型。

干净的空气以4m/s的流速从一边流入。

假设某种空气污染物以10.0kg/s的总排放速率进入空箱,其降解反应速率常数为0.20h-1。

假设完全混合,

(1)求稳态情况下的污染物浓度;

(2)假设风速突然降低为1m/s,估计2h以后污染物的浓度。

解:

(1)设稳态下污染物的浓度为ρ

则由质量衡算得

10.0kg/s-(0.20/3600)×ρ×100×100×1×109m3/s-4×100×1×106ρm3/s=0

解之得

ρ=1.05×10-2mg/m3

(2)设空箱的长宽均为L,高度为h,质量流量为qm,风速为u。

根据质量衡算方程

带入已知量,分离变量并积分,得

积分有

ρ=1.15×10-2mg/m3

2.10某水池内有1m3含总氮20mg/L的污水,现用地表水进行置换,地表水进入水池的流量为10m3/min,总氮含量为2mg/L,同时从水池中排出相同的水量。

假设水池内混合良好,生物降解过程可以忽略,求水池中总氮含量变为5mg/L时,需要多少时间?

解:

设地表水中总氮浓度为ρ0,池中总氮浓度为ρ

由质量衡算,得

积分,有

求得

t=0.18min

2.11有一装满水的储槽,直径1m、高3m。

现由槽底部的小孔向外排水。

小孔的直径为4cm,测得水流过小孔时的流速u0与槽内水面高度z的关系

u0=0.62(2gz)0.5

试求放出1m3水所需的时间。

解:

设储槽横截面积为A1,小孔的面积为A2

由题得

A2u0=-dV/dt,即u0=-dz/dt×A1/A2

所以有

-dz/dt×(100/4)2=0.62(2gz)0.5

即有

-226.55×z-0.5dz=dt

z0=3m

z1=z0-1m3×(π×0.25m2)-1=1.73m

积分计算得

t=189.8s

2.12给水处理中,需要将固体硫酸铝配成一定浓度的溶液作为混凝剂。

在一配料用的搅拌槽中,水和固体硫酸铝分别以150kg/h和30kg/h的流量加入搅拌槽中,制成溶液后,以120kg/h的流率流出容器。

由于搅拌充分,槽内浓度各处均匀。

开始时槽内预先已盛有100kg纯水。

试计算1h后由槽中流出的溶液浓度。

解:

设t时槽中的浓度为ρ,dt时间内的浓度变化为dρ

由质量衡算方程,可得

时间也是变量,一下积分过程是否有误?

30×dt=(100+60t)dC+120Cdt

(30-120C)dt=(100+60t)dC

由题有初始条件

t=0,C=0

积分计算得:

当t=1h时

C=15.23%

2.13有一个4×3m2的太阳能取暖器,太阳光的强度为3000kJ/(m2·h),有50%的太阳能被吸收用来加热流过取暖器的水流。

水的流量为0.8L/min。

求流过取暖器的水升高的温度。

解:

以取暖器为衡算系统,衡算基准取为1h。

输入取暖器的热量为

3000×12×50%kJ/h=18000kJ/h

设取暖器的水升高的温度为(△T),水流热量变化率为

根据热量衡算方程,有

18000kJ/h=0.8×60×1×4.183×△TkJ/h.K

解之得

△T=89.65K

2.14有一个总功率为1000MW的核反应堆,其中2/3的能量被冷却水带走,不考虑其他能量损失。

冷却水来自于当地的一条河流,河水的流量为100m3/s,水温为20℃。

(1)如果水温只允许上升10℃,冷却水需要多大的流量;

(2)如果加热后的水返回河中,问河水的水温会上升多少℃。

解:

输入给冷却水的热量为

Q=1000×2/3MW=667MW

(1)以冷却水为衡算对象,设冷却水的流量为,热量变化率为。

根据热量衡算定律,有

×103×4.183×10kJ/m3=667×103KW

Q=15.94m3/s

(2)由题,根据热量衡算方程,得

100×103×4.183×△TkJ/m3=667×103KW

△T=1.59K

第四章热量传递

4.1用平板法测定材料的导热系数,即在平板的一侧用电加热器加热,另一侧以冷水通过夹层将热量移走,同时板的两侧由热电偶测量其表面温度,电热器流经平板的热量为电热器消耗的功率。

设某材料的加热面积A为0.02m2,厚度b为0.01m,当电热器的电流和电压分别为2.8A和140V时,板两侧的温度分别为300℃和100℃;当电热器的电流和电压分别为2.28A和114V时,板两侧的温度分别为200℃和50℃。

如果该材料的导热系数与温度的关系为线性关系,即,式中T的单位为℃。

试确定导热系数与温度关系的表达式。

解:

设电热器的电流和电压为I和U,流经平板的热量流量为Q。

由题有

Q=UI

且有

对于薄板,取db厚度,有

又因为导热系数与温度存在线性关系,所以有

分别对db和dT进行积分得

分别取边界条件,则得

根据题目所给条件,联立方程组

解之得

a=2.24×10-3K-1

λ0=0.677W/(m·K)

因此,导热系数与温度的关系式为λ=0.677(1+2.24×10-3T)

4.2某平壁材料的导热系数W/(m·K),T的单位为℃。

若已知通过平壁的热通量为qW/m2,平壁内表面的温度为。

试求平壁内的温度分布。

解:

由题意,根据傅立叶定律有

q=-λ·dT/dy

q=-λ0(1+αT)dT/dy

分离变量并积分

整理得

此即温度分布方程

4.3某燃烧炉的炉壁由500mm厚的耐火砖、380mm厚的绝热砖及250mm厚的普通砖砌成。

其λ值依次为1.40W/(m·K),0.10W/(m·K)及0.92W/(m·K)。

传热面积A为1m2。

已知耐火砖内壁温度为1000℃,普通砖外壁温度为50℃。

(1)单位面积热通量及层与层之间温度;

(2)若耐火砖与绝热砖之间有一2cm的空气层,其热传导系数为0.0459W/(m·℃)。

内外壁温度仍不变,问此时单位面积热损失为多少?

解:

设耐火砖、绝热砖、普通砖的热阻分别为r1、r2、r3。

(1)由题易得

r1===0.357m2·K/W

r2=3.8m2·K/W

r3=0.272·m2K/W

所以有

q==214.5W/m2

由题

T1=1000℃

T2=T1-QR1

=923.4℃

T3=T1-Q(R1+R2)

=108.3℃

T4=50℃

(2)由题,增加的热阻为

r’=0.436m2·K/W

q=ΔT/(r1+r2+r3+r’)

=195.3W/m2

4.4某一φ60mm×3mm的铝复合管,其导热系数为45W/(m·K),外包一层厚30mm的石棉后,又包一层厚为30mm的软木。

石棉和软木的导热系数分别为0.15W/(m·K)和0.04W/(m·K)。

试求

(1)如已知管内壁温度为-105℃,软木外侧温度为5℃,则每米管长的冷损失量为多少?

(2)若将两层保温材料互换,互换后假设石棉外侧温度仍为5℃,则此时每米管长的冷损失量为多少?

解:

设铝复合管、石棉、软木的对数平均半径分别为rm1、rm2、rm3。

由题有

rm1=mm=28.47mm

rm2=mm=43.28mm

rm3=mm=73.99mm

(1)R/L=

=3.73×10-4K·m/W+0.735K·m/W+1.613K·m/W

=2.348K·m/W

Q/L==46.84W/m

(2)R/L=

=3.73×10-4K·m/W+2.758K·m/W+0.430K·m/W

=3.189K·m/W

Q/L==34.50W/m

4.5某加热炉为一厚度为10mm的钢制圆筒,内衬厚度为250mm的耐火砖,外包一层厚度为250mm的保温材料,耐火砖、钢板和保温材料的导热系数分别为0.38W/(m·K)、45W/(m·K)和0.10W/(m·K)。

钢板的允许工作温度为400℃。

已知外界大气温度为35℃,大气一侧的对流传热系数为10W/(m2·K);炉内热气体温度为600℃,内侧对流传热系数为100W/(m2·K)。

试通过计算确定炉体设计是否合理;若不合理,提出改进措施并说明理由。

(补充条件:

有效管径2.0m)

解:

设由耐火砖内侧表面和保温材料外测表面的面积分别为A1和A4,耐火砖、钢筒和保温材料的对数平均面积分别为Am1、Am2、Am3。

钢板内侧温度为T。

稳态条件下,由题意得:

(因为钢板内侧温度较高,所以应该以内侧温度不超过400℃为合理)

有效管径R=2.0m

带入已知条件,解得T=463.5℃>400℃

计算结果表明该设计不合理

改进措施:

1、提高钢板的工作温度,选用耐热钢板;

2、增加耐火砖厚度,或改用导热系数更小的耐火砖。

4.6水以1m/s的速度在长为3m的φ25×2.5mm管内,由20℃加热到40℃。

试求水与管壁之间的对流传热系数。

解:

由题,取平均水温30℃以确定水的物理性质。

d=0.020m,u=1m/s,ρ=995.7kg/m3,μ=80.07×10-5Pa·s。

流动状态为湍流

所以得

4.7用内径为27mm的管子,将空气从10℃加热到100℃,空气流量为250kg/h,管外侧用120℃的饱和水蒸气加热(未液化)。

求所需要的管长。

解:

以平均温度55℃查空气的物性常数,得λ=0.0287W/(m·K),μ=1.99×10-5Pa·s,

cp=1.005kJ/(kg·K),ρ=1.077kg/m3

由题意,得

u=Q/(ρA)=112.62m/s

Re=duρ/μ=0.027×112.62×1.077/(1.99×10-5)=1.65×105

所以流动为湍流。

Pr=μcp/λ=(1.99×10-5)×1.005/0.0287=0.697

α=0.023·λ/d·Re0.8·Pr0.4

=315.88W/(m2·K)

ΔT2=110K,ΔT1=20K

ΔTm=(ΔT2-ΔT1)/ln(ΔT2/ΔT1)

=(110K-20K)/ln(110/20)

=52.79K

由热量守恒可得

απdLΔTm=qmhcphΔTh

L=qmcphΔTh/(απdΔTm)

=250kg/h×1.005kJ/(kg·K)×90K/[315.88W/(m2·K)·π·0.027m·52.79K]

=4.44m

4.8某流体通过内径为50mm的圆管时,雷诺数Re为1×105,对流传热系数为100W/(m2·K)。

若改用周长与圆管相同、高与宽之比等于1:

3的矩形扁管,流体的流速保持不变。

问对流传热系数变为多少?

解:

由题,该流动为湍流。

因为为同种流体,且流速不变,所以有

可得

矩形管的高为19.635mm,宽为58.905mm,计算当量直径,得

d2=29.452mm

4.9在换热器中用冷水冷却煤油。

水在直径为φ19×2mm的钢管内流动,水的对流传热系数为3490W/(m2·K),煤油的对流传热系数为458W/(m2·K)。

换热器使用一段时间后,管壁两侧均产生污垢,煤油侧和水侧的污垢热阻分别为0.000176m2·K/W和0.00026m2·K/W,管壁的导热系数为45W/(m·K)。

试求

(1)基于管外表面积的总传热系数;

(2)产生污垢后热阻增加的百分数。

解:

(1)将钢管视为薄管壁

则有

K=338.9W/(m2·K)

(2)产生污垢后增加的热阻百分比为

注:

如不视为薄管壁,将有5%左右的数值误差。

4.10在套管换热器中用冷水将100℃的热水冷却到50℃,热水的质量流量为3500kg/h。

冷却水在直径为φ180×10mm的管内流动,温度从20℃升至30℃。

已知基于管外表面的总传热系数为2320W/(m2·K)。

若忽略热损失,且近似认为冷水和热水的比热相等,均为4.18kJ/(kg·K).试求

(1)冷却水的用量;

(2)两流体分别为并流和逆流流动时所需要的管长,并加以比较。

解:

(1)由热量守恒可得

qmccpcΔTc=qmhcphΔTh

qmc=3500kg/h×50℃/10℃=17500kg/h

(2)并流时有

ΔT2=80K,ΔT1=20K

由热量守恒可得

KAΔTm=qmhcphΔTh

KπdLΔTm=qmhcphΔTh

逆流时有

ΔT2=70K,ΔT1=30K

同上得

比较得逆流所需的管路短,故逆流得传热效率较高。

4.11列管式换热器由19根φ19×2mm、长为1.2m的钢管组成,拟用冷水将质量流量为350kg/h的饱和水蒸气冷凝为饱和液体,要求冷水的进、出口温度分别为15℃和35℃。

已知基于管外表面的总传热系数为700W/(m2·K),试计算该换热器能否满足要求。

解:

设换热器恰好能满足要求,则冷凝得到的液体温度为100℃。

饱和水蒸气的潜热L=2258.4kJ/kg

ΔT2=85K,ΔT1=65K

由热量守恒可得

KAΔTm=qmL

列管式换热器的换热面积为A总=19×19mm×π×1.2m

=1.36m2<4.21m2

故不满足要求。

4.12火星向外辐射能量的最大单色辐射波长为13.2μm。

若将火星看作一个黑体,试求火星的温度为多少?

解:

由λmT=2.9×10-3

4.13若将一外径70mm、长3m、外表温度为227℃的钢管放置于:

(1)很大的红砖屋内,砖墙壁温度为27℃;

(2)截面为0.3×0.3m2的砖槽内,砖壁温度为27℃。

试求此管的辐射热损失。

(假设管子两端的辐射损失可忽略不计)补充条件:

钢管和砖槽的黑度分别为0.8和0.93

解:

(1)Q1-2=C1-2φ1-2A(T14-T24)/1004

由题有φ1-2=1,C1-2=ε1C0,ε1=0.8

Q1-2=ε1C0A(T14-T24)/1004

=0.8×5.67W/(m2·K4)×3m×0.07m×π×(5004K4-3004K4)/1004

=1.63×103W

(2)Q1-2=C1-2φ1-2A(T14-T24)/1004

由题有φ1-2=1

C1-2=C0/[1/ε1+A1/A2(1/ε2-1)]

Q1-2=C0/[1/ε1+A1/A2(1/ε2-1)]A(T14-T24)/1004

=5.67W/(m2·K4)[1/0.8+(3×0.07×π/0.3×0.3×3)(1/0.93-1)]×3m×0.07m×π×(5004K4-3004K4)/1004

=1.42×103W

4.14一个水加热器的表面温度为80℃,表面积为2m2,房间内表面温度为20℃。

将其看成一个黑体,试求因辐射而引起的能量损失。

解:

由题,应满足以下等式

且有φ1-2=1;A=A1;C1-2=C0×ε1

又有A1=2m2;ε1=1

所以有

第五章质量传递

5.1在一细管中,底部水在恒定温度298K下向干空气蒸发。

干空气压力为0.1×106pa、温度亦为298K。

水蒸气在管内的扩散距离(由液面到管顶部)L=20cm。

在0.1×106Pa、298K的温度时,水蒸气在空气中的扩散系数为DAB=2.50×10-5m2/s。

试求稳态扩散时水蒸气的传质通量、传

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1