负负得正教学的有效模型.docx

上传人:b****5 文档编号:7664755 上传时间:2023-01-25 格式:DOCX 页数:6 大小:20.53KB
下载 相关 举报
负负得正教学的有效模型.docx_第1页
第1页 / 共6页
负负得正教学的有效模型.docx_第2页
第2页 / 共6页
负负得正教学的有效模型.docx_第3页
第3页 / 共6页
负负得正教学的有效模型.docx_第4页
第4页 / 共6页
负负得正教学的有效模型.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

负负得正教学的有效模型.docx

《负负得正教学的有效模型.docx》由会员分享,可在线阅读,更多相关《负负得正教学的有效模型.docx(6页珍藏版)》请在冰豆网上搜索。

负负得正教学的有效模型.docx

负负得正教学的有效模型

“负负得正”教学的有效模型

  教师的教学和相关研究表明[1][2]:

通过学生易于理解的模型来说明为什么“负负得正”、教授“负负得正”是可行的,也是合理的;学生能够接受通过这种方式所总结的有理数乘法法则.也就是说,模型说明是有理数乘法法则教学的有效选择,也是最主要的策略.既如此,随之而来的问题是:

什么样的说明“负负得正”的模型是最好的模型?

具体而言:

不同的模型对学生的理解有影响吗?

教师倾向于什么样的模型?

学生倾向于什么样的模型?

综合考虑教与学的因素,什么样的模型最有效?

  

  一、不同的模型对学生的理解没有显著性影响――一项教学实验

  

  为了解教师教学中所使用的说明“负负得正”的模型与学生理解之间的关系,我们选取山东省某市一所重点中学的四个班级,开展实验研究.这些班级是按照学生入学考试成绩分班的,因而,我们假设这些班级之间没有显著性差异.三位教师在没有任何干预的情况下使用四种模型授课,教师在四个班级中所使用的模型见表1(所有模型的说明见附件).我们实地听取了教师的课堂教学.教师授课结束后,我们对四个班级的学生进行了问卷调查与访谈.调查的目的是了解学生在使用说明“负负得正”的模型与教师授课时所使用的模型之后的教学效果.调查过程如下.

  题目:

“以(-4)×(-3)为例,用尽可能多的方法(如文字解释、画直观图、算式表示等)来说明为什么‘负负得正’.”

  教学中使用的说明“负负得正”的模型如表1.

  

  分析表1,我们可以得到以下结论:

  

(1)学生的理解不受教师所用模型的影响.除2班外,能够使用教师的模型来说明“负负得正”的学生占班级人数的6%~9%之间.这说明教师所用的模型没有对学生产生显著性影响.2班是一个例外,没有一个学生使用归纳模型.这表明,这一模型很难为学生接受.联想到学生的教科书中使用了归纳模型,我们有理由相信,这个模型是一个较难理解的模型.

  

(2)相反数模型比较容易理解.除7人自觉地使用了教师所介绍的相反数模型外,还有7人自发地使用了相反数模型,使用该模型的学生人数占提供模型人数的51.9%(表2).相反数模型成了使用率最高的模型.我们有理由相信,使用该模型说明“负负得正”,有利于学生理解.

  

  (3)能够使用说明“负负得正”的模型学生较少.

  在所测试的295名学生中,仅有27人即9%的学生能够通过模型说明“负负得正”.所以,对于算理的理解,不能有过高的要求,教师也不可有过高的期待.

  

  二、师生对模型的倾向性

  

  1.教师对模型的倾向性

  

(1)教师实际教学中使用的模型:

数轴模型,归纳模型,相反数模型.教师在实际教学中使用了哪些模型来说明“负负得正”,我们进行了问卷调查,调查内容如下:

  教学有理数的乘法,关键是说明“负负得正”.回顾一下你课堂上教“负负得正”的情形,请结合你的教学实际,描述你教“负负得正”的过程(自己怎样教的,就怎样描述).

  统计结果如表3.

  

  教师最喜欢使用数轴模型,占总数的39.5%.这个模型是原大纲教科书中使用的模型[3].关于这个模型,调查中发现,不仅学生,即便从事数学教育多年的教师,也容易困惑[4].如此多的教师使用了数轴模型,反映出原教科书对教师的影响还是很大的.

  29%的教师使用了归纳模型,成为了教师的第二选择.这个模型是北师大版教科书中的模型,教师使用的就是该教科书[5].18.4%的教师使用了相反数模型[6].这个模型不是教师所用教科书中的模型,如此多的教师使用了这个模型,反映出教师对该模型的偏爱.以上3种模型占教师使用模型的86.9%.相应地,少数教师使用了其他模型.

  

(2)教师喜欢的模型:

归纳模型,数轴模型,相反数模型.

  为了解教师对模型的倾向性,我们提供了7个说明“负负得正”的模型供教师选择,38名教师的选择情况如表4.

  x

  教师喜欢的模型依次是:

归纳模型,数轴模型,相反数模型.这3个模型的排列顺序与教师在实际教学中使用的模型的顺序大致相同.教师受教科书的影响还是很大的.

  综合教师教学中使用的模型和教师选择的模型,我们可以得到结论:

教师最倾向于使用的模型依次是归纳模型、数轴模型、相反数模型.

  2.学生对模型的倾向性

  

(1)学生回答问卷时所使用的模型是相反数模型.对学生的问卷调查显示,仅有9.0%的学生给出了比较合理的说明“负负得正”的模型.除此以外,为说明“负负得正”的合理性,说服自己接受“负负得正”,学生又创造了各种各样的准合理或者不合理的模型.统计分析这些模型,可以从中窥视出学生对模型的倾向性(表5).从表中可以看出:

  

  ①学生最倾向于相反数模型.在学生自己创造的模型中,最常用的就是“相反数的相反数模型”和“抵消模型”,尽管这两种模型都存在着一些问题.如果加上“相反数模型”,就有21.01%的学生使用了这类模型.我们有理由相信,用相反数模型进行教学,是学生比较容易接受的.

  相反,虽然归纳模型相对于相反数模型更具有数学味,但是,只有0.34%的学生使用了这个模型.这引起了我们的思考:

既然我们很难或者说不能够把为什么“负负得正”的道理讲清楚,在教学中,关键就是要让学生比较顺利地接受事实,不让学生觉得“负负得正”是“天上掉下来个林妹妹”.从这个角度而言,我们就不能对模型的所谓合理性“深究”,故而,相反数模型就要比归纳模型好.

  ②对规定性的认可.认为是“复述法则”、“书上说的,老师讲的”和“是个规定,没有理由”的学生占48.47%,几近一半.这说明学生对“负负得正”规定性的认识是:

这是一个规定,不好解释.

  

(2)学生喜欢的模型:

归纳模型,好孩子模型,数轴模型,相反数模型.

  为了解学生对模型的倾向性,我们提供了7个说明“负负得正”的模型供学生选择(仅选取3班和6班),学生的选择情况如表6.

  

  ①学生喜欢的模型依次是:

归纳模型,好孩子模型,数轴模型和相反数模型.

  学生喜欢好孩子模型,大大超出了我们的预料.以下是对学生的访谈(学生-S;教师-T).

  S:

我喜欢这个模型.这个最好了,最形象了.我今天回家都给我妈讲了.

  T:

妈妈听明白了没有?

  S:

听明白了.我妈妈说,这个很好,很有意思.

  T:

如果老师上课时用这个模型来说明“负负得正”,你认为可以吗?

  S:

完全可以.我们班同学今天都在说这个方式说得清楚,比书上的好.看了这个以后,我就对有理数的乘法彻底懂了,我一辈子也忘不了.

  15.8%的教师选择了好孩子模型.有的教师认为“孩子不能以好坏区分”,这样对教育学生不利.同样,也有个别的学生提出了类似的担心.

  ②喜欢和会用之间的矛盾.教师、学生都比较喜欢归纳模型,原因也许是这个模型是教科书中的模型.然而,调查表明,能够使用这个模型说明“负负得正”的学生少之又少.对这个模型,要谨慎使用.

  综合学生回答问卷时使用的模型和学生选择的模型,我们可以得到结论:

学生最倾向于使用的模型依次是相反数模型、归纳模型、好孩子模型、数轴模型.

  3.师生对模型的倾向性:

归纳模型、数轴模型与相反数模型

  把学生喜欢的模型、教师喜欢的模型与教师教学中使用的模型进行对比,分析如下(图1).

  

(1)师生倾向于使用的模型依次为:

归纳模型、数轴模型与相反数模型.

  教师最倾向于使用归纳模型,学生最倾向于使用相反数模型.教师最喜爱的模型与教师最倾向于使用的模型是一致的,学生最喜爱的模型与学生最倾向于使用的模型不一致.

  教师、学生对好孩子模型的倾向性差异较大:

学生非常喜欢,教师却不大喜欢.

  

(2)师生均不喜欢形式化的模型,比如分配律模型.

  

  三、对模型的分析

  

  1.模型就是一副“脚手架”

  

  我们设计了这样一个问题:

“为了说明‘负负得正’,我们给学生提供了一个说明的模型.这个模型其实就是一副脚手架,一旦掌握了有理数乘法法则,这个脚手架就可以拆除了.”表7是教师的回答情况.

  55.3%的教师持赞同态度,31.6%的教师不赞同.不赞同的教师也许认为,这些模型恰恰说明了为什么“负负得正”,恰恰能够帮助学生理解有理数乘法的算理.既如此,当然不能随随便便地拆除了.

  

  2.模型并没有说明算理

  推导小数乘法法则、分数除法法则时,要么凭直观进行推理,要么使用了规律进行推理,在很大程度上说明了运算的算理.“介绍一个实例,观察一个图形,导出一个解释,难道不比去介绍形式化证明更好吗.”比如,要说明乘法交换律,就可以用图形非常直观地说明3×4=4×3.但是,有理数乘法就完全不同了.

  分配律模型事实上是在“保持运算的持续性”的前提下推导出了“负负得正”[7][8],本质上有了形式推理的味道,但有多少师生喜欢它?

归纳模型是一种合情推理模型,但是,调查表明,学生很难掌握它.除这两个模型外,其他模型几乎没有多少数学味道,本质上说,这些模型是为了帮助学生理解和掌握“负负得正”法则的“脚手架”,是裹在原理外面的“糖衣”.因为原理艰涩难懂,因为保持运算的持续性不好理解,所以通过模型这层“糖衣”把它包装起来,这样接受起来就容易多了.

  

  既然没有说明算理,谈何要求学生理解其中的道理呢?

既如此,模型不是脚手架又是什么?

不是不想说明其中的道理,而是很难说清其中的道理,因为“负负得正”超越了学生的经验,很难证明.“由于日常生活中很少有学生容易理解的两个负数相乘的实例,因此学生会对法则合理性的认识有一定的困难.”[9]

  3.教学从学生对模型的倾向性和认知水平出发

  我们设计了这样一个问题:

“对于说明‘负负得正’的模型,只要学生喜欢,便于学生掌握‘负负得正’法则,哪一个都可以.”教师的回答情况如表8.

  

  不赞同的只有10.5%,绝大部分教师认为,选择模型,要从学生对模型的倾向性和认知水平出发.实际教学中的不匹配现象值得我们思考.

  

  四、结论与建议

  

  1.教师使用的模型对学生的理解没有显著性影响

  调查表明,教师使用的说明“负负得正”的模型对学生的理解没有显著性影响,能够说明“负负得正”的学生人数非常少,既然如此,就应该选择学生易于理解的模型.

  2.师生最倾向使用的模型依次是:

归纳模型、数轴模型与相反数模型

  虽然师生倾向于归纳模型,虽然归纳模型体现了真正的数学[10],但是,由于学生在实际中很难获得对它的理解,因而要谨慎使用.数轴模型也获得了师生的认可,但是正如有的研究所表明的,这个模型让学生转来转去,容易迷惑.相反数模型得到师生的一致认可,并且由于学生常常无意识地、自发地使用这个模型,也就是说学生最容易理解这个模型,所以,基于“要选择学生易于理解的模型”这一结论,我们应该更多地使用相反数模型.

  

  师生最不喜欢形式化的模型,如分配律模型.

  3.模型并没有说明为什么“负负得正”,模型就是一副脚手架

  既然一种模型不能够真正说明“负负得正”,就应该选择另一种学生易于理解的模型,这是教学“高效性”的要求.

  4.教学中和教科书中可以使用相反数模型

  附件:

说明为什么“负负得正”的模型

  

(1)归纳模型:

(-5)×2=-10,(-5)×1=-5,

  (-5)×0=0,从而(-5)×(-1)=5,(-5)×(-2)=10,(-5)×(-3)=15.

  

(2)分配律模型:

(-5)×(-3)=(-5)×(0-3)=(-5)×0-[(-5)×3]=0-(-15)=15.

  (3)相反数模型:

5×3=5+5+5=15;(-5)×3=

  (-5)+(-5)+(-5)=-15.所以,把一个因数换成它的相反数,所得的积就是原来的积的相反数.(-5)×(-3)=15.

  (4)气温变化模型:

今天的气温记为0摄氏度,每天下降5摄氏度.昨天记为-1,前天记为-2,大前天记为-3,(-5)×(-3)就是大前天的度数,就是15.

  (5)数轴模型:

规定,数轴的正方向为东,数轴的负方向为西.一个人在数轴的原点处,-5看做向西运动5米(计划向西);(-5)×(-3)看做沿反方向(即向东)运动3次.结果:

向东运动了15米.所以(-5)×(-3)=15.

  (6)好孩子模型:

好孩子用正数表示(+),坏孩子用负数表示(-);进城市用正数表示(+),出城市用负数表示(-);好事用正数表示(+),坏事用负数表示(-).好孩子(+)进城(+),对城市来说是件好事(+),所以(+)×(+)=+;坏孩子(-)出城(-),对城市来说是件好事(+),所以(-)×(-)=+.所以(-5)×(-3)=15.

  (7)向后转模型:

规定一个人面朝东为+1,面朝西为-1.原地不动,表示×(+1);向后转,表示×(-1).现在一个人面朝西(-1),向后转×(-1),此时,他面朝东,所以(-1)×(-1)=1.所以(-5)×(-3)=15.

  (注:

本文得到张奠宙先生的指导,特致谢意)

  

  参考文献:

  [1]李光树.小学数学教学论[M].北京:

人民教育出版社,2004:

161.

  [2]马云鹏.小学数学教学论[M].北京:

人民教育出版社,2003:

20.

  [3]人民教育出版社中学数学室.代数第一册(上)[M].北京:

人民教育出版社,2001:

93-101.

  [4]罗增儒.案例创作:

“(-3)×(-4)=?

”数轴表示的挑战[J].中学数学教学参考,2004(12):

3-7.

  [5]马复.数学(七年级上册)[M].北京:

北京师范大学出版社,2005:

74-79.

  [6]王建磐.数学(七年级上)[M].上海:

华东师范大学出版社,2001:

52-56.

  [7]F.克莱因.高观点下的初等数学(第一册)[M].武汉:

湖北教育出版社,1989,7-37.

  [8][10]FREUDENTHALH.作为教育任务的数学[M].陈昌平,唐瑞芬,等译.上海:

上海教育出版社,1995:

189-210,221.

  [9]范良火.数学?

七年级(上)教学参考书[M].杭州:

浙江教育出版社,2006:

59.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1