因式分解的方法技巧汇总.docx

上传人:b****5 文档编号:7611423 上传时间:2023-01-25 格式:DOCX 页数:9 大小:21.01KB
下载 相关 举报
因式分解的方法技巧汇总.docx_第1页
第1页 / 共9页
因式分解的方法技巧汇总.docx_第2页
第2页 / 共9页
因式分解的方法技巧汇总.docx_第3页
第3页 / 共9页
因式分解的方法技巧汇总.docx_第4页
第4页 / 共9页
因式分解的方法技巧汇总.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

因式分解的方法技巧汇总.docx

《因式分解的方法技巧汇总.docx》由会员分享,可在线阅读,更多相关《因式分解的方法技巧汇总.docx(9页珍藏版)》请在冰豆网上搜索。

因式分解的方法技巧汇总.docx

因式分解的方法技巧汇总

因式分解的方法技巧汇总

作者:

***

来源:

《科技视界》2014年第01期

        【摘要】本文对初中所学因式分解的方法进行了汇总,主要包括:

提公因式法、公式法。

又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等,以及注意的原则:

分解要彻底;最后结果只有小括号;最后结果中多项式首项系数为正。

还有思考顺序:

先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适。

        【关键词】因式分解;提公因式法、公式法;又有拆项和添减项法;分组分解法和十字相乘法;待定系数法;双十字相乘法;对称多项式轮换对称多项式法

        很多同学在做因式分解的题目时,会觉得无从入手。

而面临较难题目时,更加摸不着头脑。

在此汇总几种因式分解的方法,以供参考。

其实,因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。

(实际上就是把见到的问题复杂化)注意三原则:

一是分解要彻底;二是最后结果只有小括号;三是最后结果中多项式首项系数为正(例如:

-3x2+x=x(-3x+1))。

        归纳方法

        沪科版七下课本上有:

1)提公因式法;2)公式法;3)分组分解法;4)凑数法;5)组合分解法;6)十字相乘法[x2+(a+b)x+ab=(x+a)(x+b)];7)双十字相乘法;8)配方法;9)拆项法;10)换元法;11)长除法;12)加减项法;13)求根法;14)图象法;15)主元法;16)待定系数法17)特殊值法;18)因式定理法。

        基本方法:

        1提公因式法

        各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

        具体方法:

当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

        口诀:

找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

        例如:

-am+bm+cm=-m(a-b-c);

        a(x-y)+b(y-x)=a(x-y)-b(y-x)=(x-y)(a-b)。

        注意:

把■变成2×■不叫提公因式。

        2公式法

        如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

        平方差公式:

a2-b2=(a+b)(a-b);

        完全平方公式:

a2±2ab+b2=(a±b)2;

        注意:

能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

        两根式:

ax2+xb+c=a(x-■)(x-■)

        立方和公式:

a3+b3=(a+b)(a2-ab+b2);

        立方差公式:

a3-b3=(a-b)(a2+ab+b2);

        完全立方公式:

a3±3a2b+3ab2±b3=(a±b)3。

        公式:

a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)

        例如:

a2+4ab+4b2=(a+2b)2。

        3分解因式技巧

        1)分解因式与整式乘法是互为逆变形。

        2)分解因式技巧掌握:

        ①等式左边必须是多项式;

        ②分解因式的结果必须是以乘积的形式表示;

        ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;

        ④分解因式必须分解到每个多项式因式都不能再分解为止。

        注:

分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

        3)提公因式法基本步骤:

        

(1)找出公因式;

        

(2)提公因式并确定另一个因式:

        ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;

        ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

        ③提完公因式后,另一因式的项数与原多项式的项数相同。

        (3)分组分解法分组分解是解方程的一种简洁的方法,我们来学习这个知识。

        能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:

二二分法,三一分法。

        比如:

ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)

        我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

        ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

        几道例题:

        (ⅰ)5ax+5by+3ax+3by

        解法:

5ax+5by+3ax+3by

        5x(a+b)+3y(a+b)

        =(5x+3y)(a+b)

        说明:

系数不一样一样可以做分组分解,和上面一样,把5ax和5by看成整体,把3ax和3by看成一个整体,利用乘法分配律轻松解出。

        (ⅱ)x3-x2+x-1

        解法:

x3-x2+x-1=x2(x-1)+(x-1)=(x-1)(x2+1)利用二二分法,提公因式法提出x2,然后相合轻松解决。

        (ⅲ)x2-x-y2-y

        解法:

x2-x-y2-y

        =(x2-y2)-(x+y)

        =(x+y)(x-y)-(x+y)

        =(x+y)(x-y-1)

        利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

        4十字相乘法

        这种方法有两种情况。

        ①x2+(p+q)x+pq型的式子的因式分解

        这类二次三项式的特点是:

        二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。

因此,可以直接将某些二次项的系数是1的二次三项式因式分解:

        x2+(p+q)x+pq=(x+p)(x+q)。

        ②kx2+mx+n型的式子的因式分解

        如7x2-19x-6=(7x+2)(x-3)。

        十字相乘法口诀:

首尾分解,交叉相乘,求和凑中。

        5拆项、添项法

        这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。

要注意,必须在与原多项式相等的原则下进行变形。

        例如:

bc(b+c)+ca(c-a)-ab(a+b)

        =bc(c-a+a+b)+ca(c-a)-ab(a+b)

        =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)

        =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

        =(bc+ca)(c-a)+(bc-ab)(a+b)

        =c(c-a)(b+a)+b(a+b)(c-a)

        =(c+b)(c-a)(a+b)。

        6配方法

        对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。

属于拆项、补项法的一种特殊情况。

也要注意必须在与原多项式相等的原则下进行变形。

        例如:

x2+3x-40

        =x2+3x+■-■

        =(x+8)(x-5)。

        7应用因式定理

        对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x=a。

        例如:

f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。

        (事实上,x2+5x+6=(x+2)(x+3)。

        注意:

        1)对于系数全部是整数的多项式,若x=■(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;

        2)对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为■的约数

        8换元法

        有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。

注意:

换元后勿忘还元。

        例如在分解(x2+x+1)(x2+x+2)-12时,

        可以令y=x2+x,则:

        原式=(y+1)(y+2)-12

        =y2+3y+2-12

        =y2+3y-10

        =(y+5)(y-2)

        =(x2+x+5)(x2+x-2)

        =(x2+x+5)(x+2)(x-1)。

        9求根法

        令多项式f(x)=0,求出其根为x1,x2,x3,…xn。

则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)…(x-xn)。

        例如在分解2x4+7x3-2x2-13x+6时,

        令2x4+7x3-2x2-13x+6=0,则通过综合除法可知,该方程的根为0.5,-3,-2,1。

        所以2x4+7x3-2x2-13x+6

        =(2x-1)(x+3)(x+2)(x-1)。

        10图象法

        令y=f(x),做出函数y=f(x)的图象,找到函数图像与x轴的交点x1,x2,x3,…xn,则多项式可因式分解为f(x)=(x-x1)(x-x2)(x-x3)…(x-xn)。

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

        例如在分解x3+2x2-5x-6时,可以令y=x3+2x2-5x-6。

作出其图像,与x轴交点为-1,-3,2则x3+2x2-5x-6=(x+1)(x+3)(x-2)。

        11主元法

        先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

        12特殊值法

        将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

        例如在分解x3+9x2+23x+15时,

        令x=2,则x3+9x2+23x+15=8+36+46+15=105,将105分解成3个质因数的积,即105=3×5×7。

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5在x=2时的值,则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

        13待定系数法

        首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

        例如在分解x4-x3-5x2-6x-4时,由分析可知:

这个多项式没有一次因式,因而只能分解为两个二次因式。

于是设:

        x4-x3-5x2-6x-4

        =(x2+ax+b)(x2+cx+d)

        =x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x2+bd

        由此可得a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4。

        解得a=1,b=1,c=-2,d=-4。

        则x4-x3-5x2-6x-4

        =(x2+x+1)(x2-2x-4)。

        14双十字相乘法

        双十字相乘法属于因式分解的一类,类似于十字相乘法。

双十字相乘法就是二元二次六项式,原始的式子如下:

ax2+bxy+cy2+dx+ey+f(x,y为未知数),其余都是常数用一道例题来说明如何使用。

        例:

分解因式:

x2+5xy+6y2+8x+18y+12。

        分析:

这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。

        解:

双十字相乘法其步骤为:

        ①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y);

        ②先依一个字母(如y)的一次系数分数常数项。

如十字相乘图②中6y2+18y+12=(2y+2)(3y+6);

        ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。

        15利用根与系数的关系

        对二次多项式进行因式分解

        例:

对于二次多项式ax2+bx+c(a≠0)

        ax2+bx+c(a≠0)

        =a(x2+■x+■)

        当Δ=b2-4ac≥0时,

        ax2+bx+c(a≠0)=a(x-x1)(x-x2)。

        多项式因式分解的一般步骤:

        ①如果多项式的各项有公因式,那么先提公因式;

        ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

        ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

        ④分解因式,必须进行到每一个多项式因式都不能再分解为止。

也可以用一句话来概括:

“先看有无公因式,再看能否套公式。

十字相乘试一试,分组分解要合适。

        几道例题

        (ⅰ)分解因式

        (1+y)■-2x■(1+y■)+x■(1-y)■

        解:

原式=(1+y)■-2(1+y■)x■(1-y)■+x■(1-y)■-2■(1+y■)x■(1-y)-2x■(1+y■)(补项)

        [(1+y)+x■(1-y)■]2-2(1+y■)x■(1-y)-2x2■(1+y2■)(完全平方)

        =[(1+y)+x■(1-y)■]2-2x■

        =[(1+y)+x■(1-y)■+2x][(1+y)+x■(1-y)■-2x]

        =(x2-x2y+2x+y+1)(x2-x2y-2x+y+1)

        =[(x+1)2-y(x2-1)■][(x-1)2-y(x2-1)]

        =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

        (ⅱ)求证:

对于任何实数x,y,下式的值都不会为33:

        x5+3x4y-5x3y2-15x2y3+4xy4+12y5

        解:

原式=(x5+3x4y)-(5x3y2-15x2y3)+(4xy4+12y5)

        =x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)

        =(x+3y)(x4-5x2y2+4y4)

        =(x+3y)(x2-4y2)(x2-y2)

        =(x+3y)(x+y)(x-y)(x+2y)(x-2y)。

        当y=0时,原式=x5不等于33;

        当y≠0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

        (ⅲ)ΔABC的三边a、b、c有如下关系式:

-c2+a2+2ab-2bc=0,

        求证:

这个三角形是等腰三角形。

        分析:

此题实质上是对关系式的等号左边的多项式进行因式分解。

        证明:

∵-c2+a2+2ab-2bc=0,

        ∴(a+c)(a-c)+2b(a-c)=0.

        ∴(a-c)(a+2b+c)=0.

        ∵a、b、c是ΔABC的三条边,

        ∴a+2b+c>0.

        ∴a-c=0,即a=c,ΔABC为等腰三角形。

        (Ⅳ)把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。

        解:

-12x2nyn+18xn+2yn+1-6xnyn-1

        =-6xnyn-1(2xny-3x2y2+1).

        因式分解四个注意:

        因式分解中的四个注意,可用四句话概括如下:

首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。

        现举下例,可供参考。

        例1:

把-a2-b2-2ab+4分解因式。

        解:

-a2-b2-2ab+4

        =-(a2-2ab+b2-4)

        =-(a-b+2)(a-b-2)

        这里的“负”,指“负号”。

如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

防止学生出现诸如:

-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

        例2:

把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。

        解:

-12x2nyn+18xn+2yn+1-6xnyn-1

        =-6xnyn-1(2xny+3x2y2+1)

        这里的“公”指“公因式”。

如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

分解因式,必须进行到每一个多项式因式都不能再分解为止。

即分解到底,不能半途而废的意思。

其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。

防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x-5x2-9)=y2(x2+1)(4x2-9)y2的错误。

        考试时应注意:

在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到整数!

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:

“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

        [责任编辑:

刘帅]

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1