化工设备选型内容提要.docx

上传人:b****6 文档编号:7579519 上传时间:2023-01-25 格式:DOCX 页数:21 大小:74.68KB
下载 相关 举报
化工设备选型内容提要.docx_第1页
第1页 / 共21页
化工设备选型内容提要.docx_第2页
第2页 / 共21页
化工设备选型内容提要.docx_第3页
第3页 / 共21页
化工设备选型内容提要.docx_第4页
第4页 / 共21页
化工设备选型内容提要.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

化工设备选型内容提要.docx

《化工设备选型内容提要.docx》由会员分享,可在线阅读,更多相关《化工设备选型内容提要.docx(21页珍藏版)》请在冰豆网上搜索。

化工设备选型内容提要.docx

化工设备选型内容提要

设备选型内容提要

第一章

1.流体获得机械能之后常表现为压力提高(静压头升高),新增的静压头可用于输送过程中转变为其他压头或消耗于克服流动阻力,因此,也可以说流体输送设备就是向流体做功以提高流体的机械能的装置

2.理论基础:

流体力学

3.依靠高速旋转的叶轮完成液体的输送,能达到大流量,但难以产生高压头。

往复泵依靠往复运动的活塞挤压排送液体,易达到高压头,但难以获得大流量

4.一般的步骤如下:

①根据被输送液体的性质和操作条件,确定泵的类型;

②计算特定的管路所提出的流量和压头:

a.输送量一般是生产任务所规定,在一定范围内有波动,所以选泵应按最大流量;

b.压头则应根据输送系统的管路、输送流体的起、终点位置,用Bernoulli方程在最大流量下进行计算;

c.为了安全可靠,往往在最大值上再加安全系数,这个系数一般由经验定。

(一般按管路要求的流量和扬程均增加20~30%)

③以计算的有效流量(Qe)和有效扬程(He)确定泵的型号,即从泵类产品样本或产品目录中查阅特性曲线和性能表,确定合适型号。

注意:

a.无一个型号的Q、H与Qe和He相符,则在相邻型号中选用Q和H都略大的的型号;

b.有几个型号都符合,则选用效率较高的泵,即点(Qe,He)靠在泵的高效率范围所对应的H-Q曲线下方为宜;

c.有该系列泵的性能范围的,直接由Qe和He确定泵的型号。

④各种性能参数的校核

a.核算泵的输出功率

b.流量、压头和效率的核算

c.安装高度(不能超过允许安装高度)

5离心通风机的结构(与离心泵比较)

①相似点

结构基本与单级离心泵类似,机壳呈蜗壳形。

②不同点

1)气体通道和出口的截面常为矩形,加工方便并便于矩形截面的气体管道连接;

2)叶轮数目比较多,且叶片比较短(有平直的、后弯的、前弯的);

3)通风机的主要要求产送气量大,不追求高效率时,采用前弯叶片有利。

6公称直径

管子和管路附件的公称直径,是为了便于设计,制造,安装和修理而规定的一种标准直径。

一般情况下,公称直径的数值,既不是管子的内径,也不是管子的外径,而是与管子内径相接近的整数。

选择管径,一般按经济最合理,即总费用最小来进行。

总费用包括操作费和设备费。

第二章

1.收尘设备是一类从气体中收集、分离或除去固体颗粒的机械设备,它的理论基础是两相流体力学。

气固分离设备

a.重力沉降室

b.惯性分离器

c.旋风分离器

d.布袋过滤器

e.电除尘器

f.湿式洗涤器

2.选择气固分离方法的依据

气体的处理量、粒子的大小及特性、允许的压力降及要求达到的分离效率。

润湿性

旋风分离器

3.颗粒对液体的亲合程度取决于颗粒的性质、液体的表面张力、颗粒与液体间的粘附力及相对运动速度。

各种湿式除尘器依靠颗粒的润湿性捕集粉尘。

a.直流式

b.回流式

c.旋流式

d.平旋式

4.标准分离器,是指各部分尺寸与除尘器筒体的直径D比例是标准化的

5主要性能参数

(1)临界直径

(2)分离效率

(3)压强降

(4)生产能力旋风分离器的生产能力,用单位时间内处理的含气体量Vs(m3/s)表示

6.设计步骤

(1)计算要求达到的除尘效率

(2)选取除尘器的结构形式

(3)根据除尘器的分级效率ηd和粉尘粒径概率分布,计算能达到的总效率

(4)选定除尘器的型号、规格

(5)计算运行条件下的压头损失和消耗功率

第三章

1.悬浮液分类

a.亲液胶体其中固体和其它分散介质具有较大的亲和力,对添加的电解质不敏感。

b.疏液胶体易用添加电解质的方法使细粒聚集。

2.凝聚和絮凝是常用的悬浮液预处理方法,都和悬浮液的电学性质有关。

3根据滤渣在过滤介质的位置分:

(1)深层过滤固体颗粒沉积在过滤介质的内部,介质表面无滤渣沉积,固液分离发生在整个过滤介质的内部。

过滤介质为粒状床层或素烧陶瓷同或板组成,适于从液体中除去很少量的固体微粒,如饮用水净化

(2)滤饼过滤固体颗粒以滤饼的形式沉积在较薄的过滤

4加助滤剂的原因及方法

①悬浮液在颗粒很细时,易堵死过滤介质的孔隙;

②形成的滤饼对液体的透过性很小;

③颗粒较易变形,减少孔隙率。

添加助滤剂的目的在于能形成结构疏松、开放且几乎不可压缩的滤饼。

施用方法有:

①预涂(预敷层法)将助滤剂先配成悬浮液在过滤介质表面滤出由助滤剂组成的滤饼;

②掺浆加料法将助滤剂加入到悬浮液中一起过滤(不适于滤饼是回收物的情况)

介质的过滤特性在于它的渗透性和阻挡性,没有它就不可能进行过滤操作。

(2)过滤介质的基本性能

①过滤开始后不久介质细孔上产生架桥现象,截留粒子获得澄清的滤液;②流体阻力小;

③使用中不发生突然堵塞;④耐磨、抗弯、耐热,化学稳定性好,使用寿命长;

⑤表面光滑,容易剥离滤饼。

5.过滤的优点

是悬浮液在压强差的作用下,通过多孔介质而实现固液分离,与沉降操作相比,过滤操作时间短,滤饼湿含量较低;属机械分离,比蒸发、干燥等非机械分离操作所消耗的能量要低得多。

6.滤饼的特性参数

①比阻;②滤饼的压缩性;③滤饼的空隙率

7.根据推动力产生的不同分为:

重力过滤机;加压过滤机;真空过滤机;离心机

操作压力(表压)一般不超过0.8MPa,个别达1.5MPa。

目前已经编有系列标准和规定代号,如BMS20/635-25,B-表示板框压滤机,M-明流式(A-暗流式),S-手动压紧(Y为液压压紧),20为过滤面积20m2,635-框内每边长635mm,25-板厚25mm。

操作是间歇性的,每个操作循环由装合、过滤、洗涤、卸渣和整理五个阶段组成。

BM84-1000/45型机,过滤面积84m2,占地不足9m2)

8适用范围

转筒真空过滤机适于大规模处理固体物含量很大、性质不同的悬浮液。

板框式压滤机适用于小规模生产及有特殊要求的场合,难过滤的或液相粘度很高的悬浮液及腐蚀性物料的过滤。

第四章

1热传递的三种方式:

热传导,对流,辐射

具有温差补偿装置的管壳式换热器:

U型管式填料函式

2.板式换热器的优缺点与适用范围

①优点

a.在较低的流速下即能达到湍流,传热系数高;

b.结构紧凑,单位空间传热面积大(1m3具有250~1500m2);

c.增减板片,调整传热面积方便,操作灵活性大

d.耗材少,材料的适用性广,可使用耐腐蚀的贵金属;

e.板片加工制造及清洗和维修方便。

②缺点

a.允许的操作压力比较低;

b.操作温度不能太高;

c.处理量不太大;

d.密封周边长,易渗漏。

③适用范围

压力不太高大、温度不太高,处理量不大的情况,尤其不宜处理易结垢、易堵赛的物料。

3设计计算与选型步骤

①初选换热器的尺寸规格

a.初步选定换热器的流动方式,一般由冷流体的进出口温度计算温差修正系数ψ(<0.8,应重算);

b.由经验初估传热系数K估,再估算传热面积A估=Q/(K估ψ△tm);

c.据A估和换热器的系列标准,初选换热器型号。

②计算管程的压降和传热膜系数

a.计算管程压降△Pt,大于允许压降,则需调整管程数重算;

b.计算管内传热膜系数ht,htK估的要求,则应重新估算K估值,另选一型号进行试算。

③计算壳程压降和传热膜系数

a.计算壳程压降△Ps,△Ps>△P允,可增大挡板间距;

b.计算壳程传热膜系数h0,太小则可减少挡板间距。

④计算传热面积,校核传热面积

据流体性质选适当的垢层热阻R,由R、ht、h0计算传热系数K计,再由传热基本方程计算A计,若A计

4物流的安排

a.安排走管程的物流

一般是高温物流、较高压强物流、腐蚀性较强的物流、较脏的物流、易结垢的物流、对压力降有特定要求的物流、容易析出结晶的物流等。

b.安排走壳程的物流

一般是粘性较大的物流、流量较小的物流、给热系数较小的物流等。

5管子

a.管径

满足压降要求,一般推荐选用管径19mm以上的管子;

对于易结垢的物料,为方便清洗,宜采用外径为25mm以上的管子;

对于有气-液两相流的工艺物流,一般选用大直径(如32mm)的管子;

对于直接火焰加热时多采用76mm的管径。

6传热的强化途径

强化传热过程就是指提高冷、热流体间的传热速率。

a.增大传热面积S

b.增大平均温度差Δtm

c.增大总传热数K

要提高K值,就必须减小各项热阻,减小热阻有以下方法:

1)选用导热系数大的材料制造的热交换器

2)加大流速(可减弱结垢层的形成和增厚)

3)防止结垢和及时地清除结垢层,以减小去垢热阻

第五章

1蒸发操作的目的

①提高水溶液中溶质的浓度;

②浓缩溶液和回收溶剂;

③以蒸发制备纯净的溶剂;

④溶剂脱臭;

⑤放射性废液的处理

2进行蒸发操作的必备条件

热能的不断供给,生成蒸汽的不断排除(一般采用冷凝法)。

3与传热比较,蒸发具有的特点

蒸发操作的实质是在间壁两侧分别有蒸汽冷凝和溶液沸腾的传热过程,所以蒸发器也是一种换热器。

与一般换热器比较,具有以下特点:

①蒸发物料是溶有不挥发溶质的溶液

在加热蒸汽温度一定时,蒸发溶液时的温差比蒸发纯溶剂的温差低,浓度越大,这种影响越显著。

②蒸发时气化的溶剂量很大,需消耗大量的蒸汽

一般采用多效蒸发提高加热蒸汽的经济性。

③蒸发物料具有某些特性,应据物料特性选择适当的蒸发方法与设备

4常见蒸发器的使用范围

夹套式蒸发器效率较低,传热面积较小。

用于制糖、制药和小型化工中。

标准式换热器适于结垢不严重、腐蚀性较小

的溶液浓缩。

悬筐式蒸发器适于易结晶、结垢溶液的蒸发;缺点:

结构复杂。

单位换热面积的金属耗量大。

水平管束式蒸发器适于热敏性物料的浓缩;由于汽液分离室的特殊作用,它还适用于发泡物料的浓缩。

外热式蒸发器氧化铝厂的蒸发器多采用这

种型式的,它适于处理易结垢

的溶液。

浸没燃烧式蒸发器适于强腐蚀、易结晶、易结垢物料的浓缩(如Na2SO4、磷酸、稀硫酸等);缺点是二次蒸汽含烟气难以利用。

强制循环蒸发器适于易结晶析出、易结垢液体的浓缩,能耗较大;

升膜式蒸发器适用于稀溶液,热敏性及易起泡的溶液,最适于热敏性物料;不适于高粘度,易结晶,易结垢的溶液;较浓溶液的蒸发,汽化水量不多,难以达到所要求的二次蒸汽速度。

垂直管降膜式蒸发器适于粘度大、浓度高的料液。

5与升膜式蒸发器适用比较,降膜式的特点如下:

①降膜式蒸发器更适于热敏性溶液的蒸发;

(降膜式蒸发器没有静压强效应,不会由此引起温差损失;沸腾传热系数和温度差的关系不大,即在较低的传热温差下,传热系数也较大)

②降膜式蒸发器适用于蒸发量较小的场合;

(产生膜状流动的原因与升膜式的不同,前者是由于重力作用及液体对管壁的亲润力,而使液体成膜状沿管壁下流,即不像后者取决于管内二次蒸汽的速度。

③降膜式蒸发器要设置分布器

蒸发器的上部有液体分布器;分布还尽量安装得水平,以免液膜流动不均匀。

(升膜式蒸发器,则不需安装这类分布装置。

6据加热蒸汽的流程和料液的流向,分为三种流程:

并流(顺流);②逆流;③平流

7蒸发设备选型的定性准则

①对于不发泡溶液或蒸发过程中无结垢和结晶生成的溶液可选自然循环式蒸发器,如标准式、悬筐式、水平管式或倾斜管式蒸发器。

②对于粘度高的溶液,可选用强制循环蒸发器、升膜或强制循环升膜式蒸发器,或刮板型蒸发器。

各种蒸发器适用的粘度范围如表。

③对浓缩过程中形成结晶的溶液,可选用标准型、强制循环型或盘管型蒸发器,也可选用刮板式。

④对蒸发时易结垢的溶液,可选用标准或强制循环型蒸发器。

⑤对易发泡溶液,可选用升膜式或强制循环蒸发器,水平管式或自然循环式蒸发器也可使用,对易发泡溶液不宜采用真空蒸发。

⑥对腐蚀性强的溶液,宜采用自然循环水平管式或标准或蒸发器。

⑦对热敏性溶液,宜采用膜式蒸发器,而且宜采用真空蒸发。

⑧在处理量大时,为了提高热经济性,减少蒸汽耗量,应采用多效蒸发或多级闪急蒸发器。

8蒸发器的设计程序

①依据溶液的性质及工艺条件,确定蒸发的操作条件(如加热蒸汽压强和冷凝器的压强等)及蒸发器的型式、流程和效数(最佳效数要作衡算才可确定)。

②依据蒸发器的物料衡算和焓衡算,计算加热蒸汽消耗量及各效蒸发量。

③求出各效的总传热系数、传热量和传热的有效温度差,从而计算出各效的传热面积。

④根据传热面积和选定的加热管的直径和长度,计算加热管数;确定管心距和排管方式,计算加热室外壳直径。

如果可以选用标准化的热交换器,则应进行选择计算而大确定具体型号。

⑤确定分离室的尺寸。

⑥其他附属设备的计算或确定。

第六章

1吸收操作的工程目的

(1)分离气体混合物,获得需要的目的组分

用洗油吸收焦炉气中的苯、甲苯和二甲苯等;

用水吸收合成氨厂放空中的氨;

用乙醇胺水溶液吸收烟道气中的二氧化碳

(2)净化合成用原料气

化工合成制得的粗原料气,大都是分组分混合物,常用吸收法除去其中的有毒性(指对催化剂)组分或无用组分。

(如合成氨的粗原料气—变换气,约含有20%~28%(体积分数)的CO2,最终需净化到含CO2为0.01%(体积分数)以下;还应脱除H2S、CO等对催化剂有毒的组分。

(3)制取溶液态的化工产品和半成品

盐酸、硝酸和硫酸的生产;

CS2氯化生产CCl4;

甲苯氧化生产苯甲酸;

丙烷氧化生产环氧丙烷等工艺过程

(不属于分离,而是制得液态产品)

(4)治理有害气体污染,保护环境

化学加工过程中排放出的一些尾气或废气,含有SO2、NO、NO2、H2S、HCN、HF、Cl2等有毒害作用的气体。

(选择碱性吸收剂吸收这些有毒的酸性气体以保护环境)

(吸收过程的工程目的并非是如此单一,往往是兼而有之)

2吸收剂选择原则

主要技术经济原则

①溶解度要大

a.完成给定任务所需吸收剂量较少,输送和再生的能耗亦低;

b.在吸收剂用量相同的条件下,吸收过程推动力大,可提高液相传质系数,从而可提高传质速率;

c.所需的传质设备尺寸也较小

②选择性要好

a.指对吸收目的组分的溶解度要大,而对其余各气体组分(又称惰气)的溶解度要小;

b.吸收剂的选择性可用选择性系数大小来衡量(目的组分溶解度与其他组分溶解度之比);

c.吸收剂的选择性好,不但能减少惰性气体的溶解损失,而且还可以提高解吸所得溶质气体的纯度。

③再生性能好

a.吸收剂循环使用,吸收剂是需要再生(即解吸)的;

b.要求物理吸收剂溶解溶质的溶解度对温度、压力条件变化敏感。

(以利于升温、减压再生)

c.对化学吸收剂,应与溶质发生可逆的化学反应,以利于加热再生之;

d.吸收剂再生性能的优劣及耗能之多少,是评价吸收剂乃至于整个吸收过程经常性的重要指标。

④具有良好的物理性质

a.主要是指蒸气压宜低、粘度宜小、不易发泡;

b.可减少吸收剂的挥发性损失;

c.利于气-液两相的良好流动与密切接触,实现高效稳定的操作。

⑤具有良好的化学稳定性和热稳定性

保证在长期使用中较少地变质和降解。

⑥对金属设备腐蚀性宜小,尽可能无毒、不易燃烧

⑦廉价、易得

实际选择时,应根据吸收过程的主要要求,对可供选用的吸收剂做较全面的技术经济评价,择优选择之。

3.双膜的相际传质模型(W.G.Whitman和W.K.Lewis)

其基本假定是:

①接触的气液两相流体间存在有稳定的相界面,界面两侧分别有一层虚拟的停滞气膜和停滞液膜,膜层之外气液主体充分湍流;

②溶质组分A由气相主体到界面的传递视为以稳态分子扩散通过虚拟停滞气膜的传质;溶质组分A由界面到液相主体的传递视为以稳态分子扩散通过虚拟停滞液膜的传质;

③在两相界面上气液两相一经接触即达平衡,pAi=HcAi,亦即界面上无传质阻力。

根据以上三点假定,描述组分A稳态物理吸收的相际传质图象示于图6-7所示。

4塔设备的选择

选择塔设备,主要考虑如下指标:

①生产能力大即单位时间、单位塔截面的处理量大。

②分离效率高对板式塔是指每层塔板的分离程度大;对填料塔是指单位高度填料层所达到的分离程度大。

③操作弹性大最大气速负荷与最小气速负荷之比在,表明气速负荷波动较大时也能维持正常操作。

④流体阻力小气体通过每层塔板或单位高度填料层的压强降小。

⑤塔的结构简单,造价低廉,安装容易,维修方便,运转可靠

5填料吸收塔设计的主要任务和设计步骤

①根据生产任务和工艺要求确定流程;

②选择合适的填料;

③确定物系的气、液平衡关系;

④选择合适的吸收剂并计算其耗用量;

⑤传质系数的计算或选定;

⑥填料塔主要工艺尺寸和结构尺寸的计算与确定;

⑦塔内液体阻力的计算;

⑧喷淋量的校核;

⑨动力消耗计算与输送机械的选择;

⑩主要附属设备的选型与计算。

6填料的选择

吸收塔设计的另一个重要内容是选用合适的填料塔

①单位体积填料的表面积(即比表面积

)要大;

②单位体积填料层具有的空隙体积(即空隙率)要大;

③填料表面有较好的液体均匀分布性能,以避免液体的沟流及壁流现象;填料表面还要对吸收剂有较好的润湿性;

④气流通过填料层的阻力要小,并能在填料层中均匀分布,以使压降均衡、无死角。

这一点对大塔更为重要;

⑤制造容易、价格低廉,来源容易;

⑥具有足够的机械强度,但质量要轻;

⑦对于液体和气体均具有化学稳定性。

第七章

1.蒸馏分类:

简单蒸馏;平衡蒸馏;精馏

2.各种蒸馏方式比较

①简单蒸馏和平衡级蒸馏都只能使液体混合物得到有限的分离;

②精馏是利用液体混合物中各组分挥发度不同而将其分离,能使液体混合物得到很大程度上分离,产品可达到很高的纯度。

是一种最常用的蒸馏方式。

3.一套精馏装置包括:

塔体、再沸器、冷凝器和预热器、流体输送设备、管道、阀门和测量仪表等。

4.布置精馏流程要考虑以下几个问题:

①热能的充分利用

a.可利用的热量有塔顶和塔底产品的潜热和显热;

b.在可能的情况下可利用这些热量预热料液,减少加热蒸汽和冷凝水的消耗量,降低精馏操作的费用;

c.不同地方产生的热量的特点:

塔顶蒸汽冷凝放出的热量是多而温度不高;塔底残液带出的热量是量少而温度较高

d.热能利用方案应考虑操作是否容易控制,系统的流体阻力是否阻碍生产过程的正常进行。

②冷凝器、再沸器的安装位置

视塔的大小和操作是否方便而定:

小塔:

冷凝器安装在塔顶,再沸器在塔底,利用位差使冷凝液回流入塔;

大塔:

冷凝器在塔顶则安装、维修和清理不方便,可安装在较低位置,回流液用泵输送。

③冷凝器、再沸器的型式

可用夹套式、列管式、内盘管式;在塔外的一般用卧式列管式换热器。

④对于板式塔,还要考虑以下两个问题:

a.在每块塔板上气、液两相必须保持密切而充分的接触,为热、质传递过程提供足够大而且不断更新的相际接触表面,减少过程阻力;

b.在塔内尽量使气、液两相呈逆流流动,以获取最大的过程推动力;

c.在总体上使两相为逆流流动,而在每一块塔板上两相则为均匀的错流流动。

5主要控制参数

①回流比;②塔底温度;③塔顶温度

6操作控制手段

①改变塔釜加热量;②改变加料量;③改变加料位置:

④改变回流液量等。

7设计的一般程序(以浮阀塔为例)

①搜集和整理物性数据;②确定系统流程、绘制流程草图;③工艺过程的计算,内容包括:

(1)确定塔顶、塔底产品的质量(一般由任务书确定);

(2)根据已知条件确定塔顶、塔底操作压;

(3)进行全塔物料衡算;

(4)根据操作条件和有关数据作物系的t-x-y图;

(5)确定塔顶、塔底控制温度;

(6)选定进料状态,确定进料温度;

(7)求算最小回流比,确定操作回流比;

(8)求理论塔板数,确定加料位置;

(9)求算塔内温度分布,确定灵敏板位置;

(10)选取或求算全塔效率,确定实际塔板数、实际加料位置和实际灵敏板位置;

(11)进行全塔热平衡,求算塔顶冷凝,冷却器热负荷及冷却水消耗量;塔底再沸器热负荷及加热蒸汽消耗量;决定是否对料液进行预热及有关热负荷的计算。

④浮阀塔结构设计、主要内容有:

(1)计算塔径、确定板间距;

(2)浮阀选型;

(3)塔盘选型;

(4)计算塔高;

(5)计算气、液进、出管口直径。

⑤塔内流体力学计算、校核、作负荷性能图;

⑥辅助设备选型计算;

包括再沸器、冷凝器、冷却器、预热器及输送机械等。

⑦编制设计说明书;

⑧绘制有关图纸。

8进料状态的选择

1)进料热状态将影响精馏塔的以下几个操作参数:

①回流比R;②塔釜供热量;③塔顶冷却水消耗量;④气、液相负荷及理论塔板数等。

2)选择最佳进料热状态的总前提

高效、低耗、经济效益最佳,并结合考虑现场条件。

9最适宜回流(即操作回流比)R的计算式

①一般要求时R=(1.2~2)Rmin

②精确要求时R=(1.25~1.30)Rmin

10怎样判断一个板式精馏塔的操作是否正常是否稳定

是否正常,主要看:

①塔板上是否有一定高度的液层;②雾沫夹带是否严重;③有无液泛现象;④塔板上液体的泄漏是否严重。

是否稳定,主要看:

塔顶温度是否稳定

第八章萃取设备

1.应用

宜采用萃取单元操作:

①液体混合物各组分的沸点非常接近,其相对挥发度接近1,采用蒸馏方法不经济;

②混合液中含有较多,且汽化潜热较高的易挥发的组分,特别是该组分又不是所需的产品(如稀硝酸中的水),采用蒸馏分离能耗过高;

③混合液在蒸馏时易形成恒沸物,不能采用常规蒸馏;

④混合液中待分离的组分属于热敏性物质,蒸馏时易分解、聚合或发生其他变化,则应选择萃取;

⑤提取稀溶液中有价值的组分;

⑥分离极难分离的金属,如锆与铪,钽与铌。

2优点

①一般在常温下操作,采用溶剂分离混合物,能耗远低于蒸馏方法;②萃取过程不受物系组分相对挥发度的限制,而取决于各组分的溶解度的差异。

3萃取设备的作用

性能良好的萃取设备,均能为两相充分混合和充分分离提供条件。

萃取设备应为萃取过程提供必要且适宜得传质条件,使液-液两相充分接触,同时伴有高度得湍流,保证两相间能迅速有效的传质,使两相能及时和完善的分离。

4萃取设备的特点

①萃取设备的一个重要指标是处理能力

通常用比负荷或比流速来表示。

比负荷是单位时间内通过单位设备截面的两相总流量,其单位可为m3/(m2·h);比流速即空塔流速,通常用m/s表示。

②萃取设备的另一个重要指标是传质效率

对萃取塔来讲,一般用传质单元高度HTU或理论级当量高度HETS表示。

③用操作强度J作为综合评价设备处理能力和传质效率两方面的因素的指标

J表示萃取设备单位容积在萃取效率达到一个理论级时所能处理的物理量,因而它同时反映了设备的生产能力与萃取效率。

④除了处理能力和传质效率外,还有结构、操作等方面的特点。

5存在的问题

液、液两相密度差远小于气、液两相,随着两相中的溶质含量提高会逐渐趋近临界混溶

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1