柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx

上传人:b****6 文档编号:7559972 上传时间:2023-01-25 格式:DOCX 页数:19 大小:419.72KB
下载 相关 举报
柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx_第1页
第1页 / 共19页
柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx_第2页
第2页 / 共19页
柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx_第3页
第3页 / 共19页
柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx_第4页
第4页 / 共19页
柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx

《柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx》由会员分享,可在线阅读,更多相关《柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx(19页珍藏版)》请在冰豆网上搜索。

柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析.docx

柴油微乳液拟三元相图的绘制及燃烧性能测定华师分析

柴油微乳液拟三元相图的绘制及燃烧性能测定

学生姓名:

xxxxx学号:

xxxxx

专业:

化学师范年级班级:

xxxxx

课程名称:

应用物理化学实验

合作者:

xxxxx

实验指导老师:

何广平实验时间:

xxxxxx

 

【实验目的】

①本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液。

②通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。

【实验原理】

一、实验背景

Schulman在1959年首次报道微乳液以来,微乳液的理论和应用研究获得了迅速发展。

1985年,Shah定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。

由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。

燃油掺水是一个既古老又新兴的课题。

早在一百多年前就有人使用掺水燃油。

由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。

但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。

微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。

微乳燃油可长期稳定,不分层,且制备简单,并能使燃烧更完全,燃烧效率更高,其节油率可达5%~15%,排气温度下降20%~60%,烟度下降40%~77%,NOx和CO的排放量降低25%,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。

随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。

近年来,随着我国农业和交通运输也的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。

进口原油及成品油已成为国家财政的沉重负担而且天然石油的储备是有限的,人类面临日益严峻的能源危机。

因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃油乳化及微乳化技术,已成为人们十分关心的问题。

二、微乳柴油与燃烧减排机理

乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),

在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。

我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。

乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。

一些燃烧机理包括:

1、物理作用—“微爆现象”

油包水型分子基团,油是连续相,水是分散相,由于水沸点(100℃)低于燃油沸点(130℃以上)。

在气缸温度急剧升高时,水微粒先沸腾气化,体积在万分之一秒内瞬间增大了1500倍左右,其气化膨胀相当于一次极小的爆炸。

当油滴中的压力超过油的表面张力及环境压力之和时。

水蒸气产生的巨大压力将冲破油膜的束缚,无数小液珠产生的阻力使油滴发生爆炸,油雾化成更细小的油滴。

小油滴与空气接触的比表面积成倍提高,形成二次燃烧的雾化条件,爆炸后的细小油滴更易燃烧,其燃烧表面比纯燃油增加了104倍左右。

因此,减少了物理上的不完全燃烧和排烟损失,提高了燃烧效率,使内燃机达到节能的效果。

微爆产生的为数甚多的爆炸波,冲破了包围火焰面的CO2,N2惰性气体抑制层,促使空气形成强烈的紊流,紊流使空气、燃油蒸气在燃烧室内做更均匀的分布,同时使温度场也变得更加均匀,从而加快了燃烧速度,减少了后燃现象,避免了燃烧区间局部高温而产生的热解和裂化,使燃烧更加完全。

2、化学作用—“水煤气反应”

在缺氧条件下,油燃烧产生热裂解,形成难以燃烧的碳,使排烟冒黑烟,而在水煤气存在时,水微粒高速汽化中所含的氧与碳粒子充分结合,并被完全燃烧而形成二氧化碳,从而大大提高喷燃雾化效果,使发动机燃烧效率提高,达到增强发动机动力、节省燃料的效果。

C+H2O=C0+H2

C+2H2O=CO2+2H2。

CO+H2O=co2+H2

H2+02=H2O

上述反应过程中,提高了乳化燃料的燃烧率,降低了排烟中的烟尘含量。

同时由于乳化水的蒸发作用,均衡了燃烧时的温度场,从而抑制了NOx的形成,达到节能环保的目的。

3、掺混效应

微爆产生的爆炸波冲破了包围在火焰周围的CO2、N2惰性气体层,促使空气形成强烈的紊流,紊流使空气和柴油蒸汽在燃烧室内做更均匀的分布,同时温度场也变得更加均匀,从而加快了燃烧速度,减少了后燃现象,避免了在燃烧区间的局部高温而产生的热解和裂化,使燃烧完全。

4、抑制NO的生成

NO的生成主要有三个重要途径:

(1)由空气中的NO2在高温区反应生成的热反应NOx;

(2)火焰面上生成的活性NOx;③燃料中氮元素生成的燃料NOx。

因此,生成的NO可分为温度型NOx和燃料型NOx,其中以温度型NOx为主。

影响NO生成的因素有:

可燃混合物的组成,燃料在反应区停留时间,燃料温度和工作压力等。

根据J.B.Howcr机理,NOx的生成速度为:

d[NOx]/dt=A·exp[-Ea/RT]·[N2]·[02]1/2

可见无论在内燃机或是其它燃烧装置上,NOx的生成量与反应温度呈指数关系增加。

如果空燃比高,燃烧强度大,反应温度高,停留时间长,NOx则急剧增加。

燃烧乳化油时,由于水滴汽化、产生微爆均需吸热,由此可降低气缸工作温度,防止燃烧火焰局部高温,缩短燃烧时间,而且油掺水燃烧改善了空气和燃料混合比例,可以用较小的过量空气系数,即[N2]、[02]浓度大幅度降低,从而显著降低温度型和燃料型NOx的生成,抑制NOx对环境的污染。

三、水-柴油微乳液的配制与研究方法

对微乳柴油的研究通常包括为微乳燃油配方选择合适的表面活性剂和助表面活性剂,并考察各组分对可增溶水量的影响,确定最佳的微乳燃油配方比例。

然后针对微乳柴油体系,通过相图、电导、NMR、FT-IR、分子光谱、荧光光谱、黏度法、电子显微镜等方式研究微乳液的结构,并进行燃烧性能与尾气排放量测定。

1、拟三元相图的研究方法

研究平衡共存的相数、组成和相区边界最方便、最有效的工具就是相图。

在等温等压下三组分体系的相行为可以采用平面三角形来表示,称为三元相图。

对四组分体系,需要采用立体正四面体。

而四组分以上的体系就无法全面的表示。

通常对四组分或四组分以上体系,采用变量合并法,比如固定某两个组分的配比,使实际独立变量不超过三个,从而仍可用三角相图来表示,这样的相图称为拟三元相图。

对柴油微乳液的研究可采用拟三元相图的方法研究,相图绘制简单,根据相图可以初步推测体系的结构状态,能够比较直观地反映微乳体系相的变化,当体系有液晶相、凝胶相出现时,也能对微乳液及其相边界进行直观表示。

在表面活性剂和助剂含量一定情况下,将水往油中滴加,水量很少时为油包水型的球形微乳液,继续滴加水,水与油的比例将会变动,体系发生这样的变化:

对称性水的球体一不对称性柱体一层状结构一水为外相的各种结构,最终为对称性油的球体,这是体系内部引力变动而引起各种结构迭变的结果,而研究此方面最方便有效的工具就是相图,因此,表面活性剂相图的研究一直受到人们的关注。

也可以在水量一定的情况下,将复合表面活性剂往油中滴加,通过观察体系相的状态的变化以及体系中物质的重量比,通过拟三元相图的绘制,研究体系中物质的相溶性以及形成微乳液的条件。

本实验采用此种方法进行乳化柴油的绘制。

 

2、电导法

电导行为是微乳液的重要性质之一。

关于微乳液的电导研究,基本上围绕微乳液体系的导电行为和根据电导测量研究微乳液体系的相行为。

尽管电导测量不能直接反映各种条件对微乳液粒子的大小的影响,但微乳液的电导率在某种程度上反映了微乳液的结构,例如W/O或O/W结构,因此,通常可通过对微乳体系电导率的测定判别微乳体系的结构。

 

【实验试剂与仪器】

①实验试剂:

柴油0#、油酸(化学纯)、十六烷基三甲基溴化铵(CTAB)(化学纯)、氨水、正丁醇(化学纯)

②实验仪器:

燃烧热测定装置一套(长沙长兴高教仪器设备公司HR-15Y氧弹式热量计、HR-15热量计通用电控箱、南京大展机电技术研究所DZBW型数字式贝克曼温度计)、充氧装置一套、万用电表、5安保险丝、1000ml烧杯

恒温磁力搅拌器(金坛市正基仪器有限公司)、搅拌子(中)、氧气

FA1104电子分析天平;烧杯(50ml)、250ml、

镊子、滤纸、PH试纸、玻棒、洗耳球等、胶头滴管

【实验步骤】

一、水-柴油体系配制及拟三元相图绘制

1、复合乳化剂配比:

油酸66.15%、十六烷基三甲基溴化铵(CTAB)0.91%、氨水9.1%、正丁醇23.8%

2、复合乳化剂配制:

室温下,将油酸36.5克放入50ml的烧杯中,加入0.5克CTAB,5克氨水,13.2克正丁醇,在磁力搅拌器上不断搅拌至溶解,此时所得复合乳化剂清晰、透亮,放置备用。

3、柴油-水-复合乳化剂微乳液柴油的制备与拟三元相图绘制

在一定温度下(通常为室温),称取(5g)的水-柴油,其中[m(柴油0#)∶m(水)分别为4.5∶0.5、4∶1、3∶2、2∶3、1∶4,]样品,分别放在50ml烧杯中,逐渐往烧杯中滴加复合乳化剂,并不断在磁力搅拌器上搅拌至溶液刚好变澄清,静置约20min后观察,如仍透明,则记录所加复合表面活性剂的用量。

根据重量差减法记录加入的复合乳化剂重量,并根据体系中所含有的柴油、水的重量,计算柴油-水-复合乳化剂拟三元体系达到透明状态时各物质的重量%,根据各不同配比拟三元体系中各个物质的重量%,把复合乳化剂作为一个组分,另两个组分分别为油和水,绘制拟三元相图,用以观察柴油微乳液体系的相行为。

图1为水-柴油微乳体系拟三元相图示意图。

从图1可见,显示曲线右方是不共溶区域,中间为临界线,其余部分均为共溶区(即形成柴油-水-复合乳化剂微乳液柴油)。

图1柴油-水-复合乳化剂微乳液柴油的拟三元相图

 

二、乳化柴油燃烧热的测定

通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,

了解恒压燃烧热与恒容燃烧热的差别;了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。

1、量热法与氧弹量热装置及结果表示方法

量热法是热化学研究的基本实验方法,氧弹量热计的基本原理为能量守恒定律。

样品完全燃烧放出的热量促使卡计及周围的介质(本实验用水)温度升高,测量介质燃烧前后体系温度的变化值,可求算该样品的恒容燃烧热。

柴油为石油分馏产品,其中各烃分子所含碳原子数不同,通常以测定柴油燃烧过程中Qv的变化来衡量柴油燃烧效率的大小。

在氧弹量热计与环境没有热交换情况下,其关系式为:

m样QV=W(卡计+水)•ΔT–m(点火丝)•Q(点火丝)

(1)

m样为柴油的质量(克);Qv为柴油的恒容燃烧热(焦/克);W(卡计+水)为氧弹卡计和周围介质的热当量(焦/度),其表示卡计和水温度每升高一度所需要吸收的热量,W(卡计+水)一般通过经恒重的标准物如苯甲酸标定.苯甲酸的恒容燃烧热为26459.6焦/克。

△T为柴油燃烧前后温度的变化值。

m(点火丝)为点火丝的质量,Q(点火丝)为点火丝(铁丝)的恒容燃烧热,其值为6694.4焦/克。

在实验过程中无法完全避免“热漏”现象的存在,因此,实验中必须经过雷诺作图法或计算法校正柴油燃烧前后温度的变化值。

通过

(1)式,计算柴油燃烧的恒容热效应Qv(焦/克)。

为了避免平行测定中称量的差异对实验的影响,可通过△T/m(K/g)(单位质量柴油燃烧引起温度的变化值)或Qv/g(J/g)(单位质量柴油燃烧放出的热量),研究柴油和微乳柴油燃烧效率的不同;通过△T/△t(K/s)(即单位时间柴油燃烧时燃烧温度随时间的变化率)研究柴油和微乳柴油燃烧速率的不同。

具体实验原理、方法和雷诺作图法详见《物理化学实验》中“燃烧热测定实验”。

2、柴油与乳化柴油燃烧性能测定

实验中选择柴油0#、W/O乳化柴油作为燃烧体系,分别将约1.2克燃油体系放入坩埚,将铁丝接在氧弹卡计的两极上,并将铁丝浸没柴油中,向氧弹量热计中充以氧气,弹内的氧气压力冲至1.0Mpa,在燃油不完全燃烧的条件下,通过测定燃烧过程中△t、△T值以及燃烧残渣的重量,计算Qv/m、△T/m(K/g)、△T/△t(K/s),比较柴油与乳化柴油的燃烧效率以及燃烧速率不同,并对燃烧结果进行评价。

【数据记录与处理】

一、复合乳化剂的配制

1、称重:

油酸36.4918gCTAB0.5020g

氨水5.0572g正丁醇13.1957g

2、加入顺序:

油酸一次性倾入氨水,油酸与氨水混合成浅黄色絮状物,搅拌10分钟大概7min后也一次性倾入正丁醇,可见烧杯中变成黄色凝固状稍搅拌后加入CTAB,开始溶解少量,持续搅拌约30min,基本溶解。

二、乳化柴油的制备

1、先将柴油和水在磁力搅拌器的作用下混合均匀,再加入复合乳化剂

2、数据记录

表1柴油、自来水以及乳化剂用量

柴油:

柴油

柴油+水+磁子

柴油+水+磁子+乳化剂

乳化剂用量

4.5:

0.5

4.5072g

0.4984g

48.2460

49.5531

1.3071g

4:

1

4.0093g

1.0028g

44.9360g

47.4234g

2.4874g

3:

2

3.0127g

2.0124g

44.1132g

47.3731g

3.2599g

2:

3

2.0192g

3.0216g

47.6565g

51.2522g

3.5957g

1:

4

1.0270g

4.0071g

44.3985g

47.3433g

2.9448g

表2不同配比微乳柴油体系各组分含量

柴油:

质量

总质量

质量分数

柴油

复合乳化剂

柴油

复合乳化剂

4.5:

0.5

4.5072g

0.4984g

1.3071g

6.3127g

0.7140

0.0790

0.2071

4:

1

4.0093g

1.0028g

2.4874g

7.4995g

0.5346

0.1337

0.3317

3:

2

3.0127g

2.0124g

3.2599g

8.2850g

0.3636

0.2429

0.3935

2:

3

2.0192g

3.0216g

3.5957g

8.6365g

0.2338

0.3499

0.4163

1:

4

1.0270g

4.0071g

2.9448g

7.9789g

0.1287

0.5022

0.3691

 

图2本实验柴油-水-复合乳化剂微乳液柴油的拟三元相图

 

三、乳化柴油燃烧热的测定

1、数据记录

表3柴油和铁丝质量

柴油

铁丝燃烧前

铁丝燃烧后

燃烧的铁丝

0号柴油

1.2024g

0.0124g

0.0058g

0.0066g

9:

1

1.2123g

0.0113g

0.0000g

0.0113g

8:

2

1.2195g

0.0113g

0.0105g

0.0008g

表40#柴油燃烧数据记录

时间t/30s

温度/℃

时间t/30s

温度/℃

时间t/30s

温度/℃

时间t/30s

温度/℃

1

23.268

10

23.872

19

25.024

28

25.109

2

23.266

11

24.325

20

25.042

29

25.111

3

23.265

12

24.571

21

25.058

30

25.114

4

23.264

13

24.723

22

25.070

31

25.115

5

23.264

14

24.811

23

25.081

32

25.115

6

23.262

15

24.876

24

25.089

33

25.115

7

23.262

16

24.928

25

25.096

34

25.115

8

23.260

17

24.969

26

25.102

35

25.115

9

23.361

18

25.009

27

25.106

36

25.115

图3本实验0#柴油燃烧温度与时间关系图

 

表59:

1乳化柴油燃烧数据记录

时间t/min

温度/℃

时间t/min

温度/℃

时间t/min

温度/℃

时间t/min

温度/℃

1

23.096

11

23.124

21

24.416

31

24.535

2

23.106

12

23.125

22

24.443

32

24.538

3

23.111

13

23.194

23

24.464

33

24.539

4

23.114

14

23.628

24

24.478

34

24.540

5

23.117

15

23.939

25

24.490

35

24.540

6

23.119

16

24.116

26

24.510

36

24.540

7

23.121

17

24.218

27

24.516

37

24.540

8

23.122

18

24.297

28

24.522

9

23.123

19

24.344

29

24.530

10

23.124

20

24.386

30

24.533

 

图4本实验9:

1乳化柴油燃烧温度与时间关系图

 

表68:

2乳化柴油燃烧数据记录

时间t/30s

温度/℃

时间t/30s

温度/℃

时间t/30s

温度/℃

时间t/30s

温度/℃

1

23.476

10

24.824

19

25.331

28

25.389

2

23.475

11

24.983

20

25.343

29

25.392

3

23.475

12

25.09

21

25.353

30

25.393

4

23.475

13

25.159

22

25.362

31

25.384

5

23.475

14

25.21

23

25.37

32

25.394

6

23.475

15

25.244

24

25.376

33

25.395

7

23.481

16

25.274

25

25.381

34

25.395

8

23.973

17

25.296

26

25.385

9

24.535

18

25.316

27

25.387

 

图5本实验8:

2乳化柴油燃烧温度与时间关系图

 

2、燃烧热的计算:

计算公式:

m样QV=W(卡计+水)•ΔT–m(点火丝)•Q(点火丝)

换算得:

W(卡计+水)为氧弹卡计和周围介质的热当量(焦/度),本实验为14541.35J/℃

m(点火丝)为点火丝的质量

Q(点火丝)为点火丝(铁丝)的恒容燃烧热,其值为6694.4J/g。

对于0#柴油:

m样品=1.2024g,m铁丝=0.0066g,ΔT=1.8583℃

对于9:

1乳化柴油:

m样品=1.2123g,m铁丝=0.0113g,ΔT=1.4186℃

对于8:

2乳化柴油:

m样品=1.2195g,m铁丝=0.0008g,ΔT=1.9044℃

【结果与讨论】

(一)复合乳化剂的配制

复合乳化剂的配制过程中试剂的配比及加入顺序影响了该复合乳化剂的配制成功与否,甚至对其乳化作用也有一定影响。

本实验中各成分的作用为:

油酸作阴离子表面活化剂,CTAB作阳离子表面活化剂,氨水是使HLB值向亲水剂方向移动,正丁醇是作助表面活性剂,课进入界面膜中的表面活性剂分子间,降低界面膜的刚性,增加流动性,减少微乳液形成所需的弯曲能,易形成微乳液。

本实验先加油酸,再连续滴加氨水,搅拌10分钟,接着加入CTAB,最后加入正丁醇,再在磁子搅拌器上搅拌直至成为亮黄色透明溶液,整个过程用时约半个小时。

这是因为氨水具有碱性,加油酸后再加氨水能够增加油酸亲水性,有利于与其他两种试剂的互溶。

复合乳化剂的组分含量以及加入顺序的不同使得制备的产品效果也不同,因此可通过改变各组分含量或改变各组分的加入顺序来探究复合乳化剂的最佳制备方法。

(二)乳化柴油的制备

本实验先制备不同配比的水-柴油混合体系,在搅拌下滴入复合乳化剂直至混合体系澄清,从而达到乳化的效果。

实验关键是知道如何判断混合体系变澄清。

由于各人对于澄清与否的判断标准不同,将导致加入的复合乳化剂的量不同,从而影响到三元相图的不同。

根据不同配比乳化柴油的成分,绘制得柴油-水-复合乳化剂微乳液柴油体系拟三元相图(图2)。

由相图可见,曲线左方为共溶区形成微乳液柴油,中间为临界线,右方为不共溶区。

曲线平滑。

制备得到的微乳柴油中复合乳化剂质量分数分别为0.2071、0.3317、0.3935、0.4163、0.3691,用量偏多。

制备出来的微乳柴油,透明度很好。

在经过一个星期后,制备的微乳液柴油基本没有分层现象。

可见微乳液是一种热力学稳定体系,能自发形成,粒径小,可长期稳定存在。

(三)乳化柴油燃烧热的测定

燃烧热的测定结果显示:

0#柴油:

;9:

1乳化柴油:

;8:

2乳化柴油:

数据显示,燃烧热大小顺序为:

8:

2乳化柴油>0#柴油>9:

1乳化柴油。

燃烧结束后可以观察到,0#柴油燃烧后残留的碳最多,而两种乳化柴油的碳残余量非常的少且沾在氧弹坩埚的上方。

图6图7图8

0#柴油燃烧后产物图9:

1乳化柴油燃烧后产物图8:

2乳化柴油燃烧后产物图

9:

1乳化柴油的燃烧热小于0#柴油,这并不能说明乳化柴油的燃烧效率低于普通柴油,造成这种结果的原因是:

9:

1乳化柴油中含有20.71%的复合乳化剂,其中1.2克的乳化柴油中柴油的含量仅有71.40%,故而燃烧热小于纯的0#柴油。

而由乳化柴油碳残余量明显少于0#柴油来看,乳化柴油的燃烧效率是提高了的。

8:

2乳化柴油燃烧热最大,这归功于水含量的提高。

水在燃烧过程中汽化成水蒸气,产生许多OH活性基团,使一氧化碳尽可能完全燃烧。

水煤气反应加速燃油裂解所形成焦炭的燃烧,抑制了烟尘的生成。

水微粒气化带来的“微爆”现象使得油滴与氧气的接触面积成倍提高,减少了不完全燃烧和排烟损失,提高了燃烧效率。

资料可知,水含量在20%左右时,微乳液柴油燃烧效率最高。

在燃烧实验中,误差来源有以下几处:

(1)每一种柴油只测定一次燃烧热,没有进行平行实验进行反复测定,因而误差较大;(2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1